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Let A and B be two random variables that take values from some set finite X . Define the
statistical distance between A and B as

∆(A ;B) := 1
2 ·

∑
x∈X
|Pr[A = x ] = Pr[B = x ]| ,

and statistical distance of A from uniformity as

d(A) := ∆(A ;U),

where U has uniform distribution over X . Analogously ∆ can be defined as a distance between two
probability distributions α, β : X → [0, 1] as

∆(α ;β) := ∆(A ;B),

where A and B are random variables (taking values from X ) that are distributed according to α
and β (respectively). A similar convention applies to the distance d from uniformity.

Exercise 1: An alternative definition of statistical distance

Show that for every A and B we have

∆(A,B) =
∑

x:Pr[A=x]>Pr[B=x ]

Pr[A = x ]− Pr[B = x ] .

Exercise 2: An interpretation of statistical distance

Let α0 and α1 be two distributions over some set X . Consider the following game played by a
computationally unbounded machine M (that knows α0 and α1):

1. A uniformly random bit B ← {0, 1} is chosen.

2. A value x is sampled according to distribution αB and sent to M.

3. M receives x and produces output B′.

We say that M won the game if B = B′. Show that

∀M Pr[M wins the game] ≤ 1 + ∆(α0 ;α1)

2
. (1)

For every α0 and α1 show M that in achieves equality in (1).
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Exercise 3: Permuting does not change the distance

Show that for every two random variable A and B that take values from some set finite set X , and
every bijection f : X → X we have that

∆(f(A) ; f(B)) = ∆(A ;B).

Deduce from this that d(f(A)) = d(A).

Exercise 4: Statistical distance as a metric

Let Π be a set of all probability distributions over some finite set X . Prove that ∆ is a metric on
this set, i.e., it satisfies the following axioms:

• non-negativity: for every α, β ∈ Π we have ∆(α ;β) ≥ 0,

• identity of indiscernibles: for every α, β ∈ Π we have that ∆(α ;β) = 0 implies that α = β,

• symmetry: for every α, β ∈ Π we have that ∆(α ;β) = ∆(β ;α), and

• triangle inequality: for every α, β, γ ∈ Π we have that ∆(α ; γ) ≤ ∆(α ;β) + ∆(β ; γ).

Exercise 5: One-time pad with imperfect randomness

Let (Enc,Dec) be the one-time pad encryption scheme for messages from set {0, 1}t. Suppose a key
K is chosen from {0, 1}t according to some distribution α. Consider the guessing game as from the
definition of semantic security, that is played between a machine A and an oracle Ω (however, this
time assume that A is computationally unbouded):

1. A produces two messages m0,m1 ∈ {0, 1}t and sends them to Ω.

2. Ω selects B ← {0, 1} uniformly at random, samples K according to α and computes c =
Enc(K,mB), and sends c to A.

3. A receives c and produces as output B′

(we assume A knows α). We say that M won the game if B = B′. Show that

∀A Pr[A wins the game] ≤ 1
2 + d(α).

Exercise 6: Conditional statistical distance

Let A be a random variable over some set X and let B be a random variable over a set Y. Define
the statistical distance of A from uniformity conditioned on B as

d(A|B) :=
∑
b∈Y

P (B = b) · d(PA|B=b).

Show that d(A|B) = ∆((A,B) ; (UX , B)), where UX is a random variable with uniform distribution
over X and independent from B.
Can you find a game-based interpretation of d(A|B) similar to the one in Ex. 2?

2



Exercise 7: Noticeable functions

A function µ is noticeable iff there exists c ∈ N and n0 ∈ N such that for every n ≥ n0 we have that
|µ(n)| ≥ n−c. Answer the following questions:

(a) Is every noticeable function non-negligible?

(b) Is every non-negligible function noticeable?
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