Exercises 1

Let A and B be two random variables that take values from some set finite \mathcal{X}. Define the statistical distance between A and B as

$$
\Delta(A ; B):=\frac{1}{2} \cdot \sum_{x \in \mathcal{X}}|\operatorname{Pr}[A=x]=\operatorname{Pr}[B=x]|,
$$

and statistical distance of A from uniformity as

$$
d(A):=\Delta(A ; U),
$$

where U has uniform distribution over \mathcal{X}. Analogously Δ can be defined as a distance between two probability distributions $\alpha, \beta: \mathcal{X} \rightarrow[0,1]$ as

$$
\Delta(\alpha ; \beta):=\Delta(A ; B),
$$

where A and B are random variables (taking values from \mathcal{X}) that are distributed according to α and β (respectively). A similar convention applies to the distance d from uniformity.

Exercise 1: An alternative definition of statistical distance

Show that for every A and B we have

$$
\Delta(A, B)=\sum_{x: \operatorname{Pr}[A=x]>\operatorname{Pr}[B=x]} \operatorname{Pr}[A=x]-\operatorname{Pr}[B=x] .
$$

Exercise 2: An interpretation of statistical distance

Let α_{0} and α_{1} be two distributions over some set \mathcal{X}. Consider the following game played by a computationally unbounded machine \mathcal{M} (that knows α_{0} and α_{1}):

1. A uniformly random bit $B \leftarrow\{0,1\}$ is chosen.
2. A value x is sampled according to distribution α_{B} and sent to \mathcal{M}.
3. \mathcal{M} receives x and produces output B^{\prime}.

We say that \mathcal{M} won the game if $B=B^{\prime}$. Show that

$$
\begin{equation*}
\forall_{\mathcal{M}} \operatorname{Pr}[\mathcal{M} \text { wins the game }] \leq \frac{1+\Delta\left(\alpha_{0} ; \alpha_{1}\right)}{2} \tag{1}
\end{equation*}
$$

For every α_{0} and α_{1} show \mathcal{M} that in achieves equality in (1).

Exercise 3: Permuting does not change the distance

Show that for every two random variable A and B that take values from some set finite set \mathcal{X}, and every bijection $f: \mathcal{X} \rightarrow \mathcal{X}$ we have that

$$
\Delta(f(A) ; f(B))=\Delta(A ; B)
$$

Deduce from this that $d(f(A))=d(A)$.

Exercise 4: Statistical distance as a metric

Let Π be a set of all probability distributions over some finite set \mathcal{X}. Prove that Δ is a metric on this set, i.e., it satisfies the following axioms:

- non-negativity: for every $\alpha, \beta \in \Pi$ we have $\Delta(\alpha ; \beta) \geq 0$,
- identity of indiscernibles: for every $\alpha, \beta \in \Pi$ we have that $\Delta(\alpha ; \beta)=0$ implies that $\alpha=\beta$,
- symmetry: for every $\alpha, \beta \in \Pi$ we have that $\Delta(\alpha ; \beta)=\Delta(\beta ; \alpha)$, and
- triangle inequality: for every $\alpha, \beta, \gamma \in \Pi$ we have that $\Delta(\alpha ; \gamma) \leq \Delta(\alpha ; \beta)+\Delta(\beta ; \gamma)$.

Exercise 5: One-time pad with imperfect randomness

Let (Enc, Dec) be the one-time pad encryption scheme for messages from set $\{0,1\}^{t}$. Suppose a key K is chosen from $\{0,1\}^{t}$ according to some distribution α. Consider the guessing game as from the definition of semantic security, that is played between a machine \mathcal{A} and an oracle Ω (however, this time assume that \mathcal{A} is computationally unbouded):

1. \mathcal{A} produces two messages $m_{0}, m_{1} \in\{0,1\}^{t}$ and sends them to Ω.
2. Ω selects $B \leftarrow\{0,1\}$ uniformly at random, samples K according to α and computes $c=$ $\operatorname{Enc}\left(K, m_{B}\right)$, and sends c to \mathcal{A}.
3. \mathcal{A} receives c and produces as output B^{\prime}
(we assume \mathcal{A} knows α). We say that \mathcal{M} won the game if $B=B^{\prime}$. Show that

$$
\forall_{\mathcal{A}} \operatorname{Pr}[\mathcal{A} \text { wins the game }] \leq \frac{1}{2}+d(\alpha) .
$$

Exercise 6: Conditional statistical distance

Let A be a random variable over some set \mathcal{X} and let B be a random variable over a set \mathcal{Y}. Define the statistical distance of A from uniformity conditioned on B as

$$
d(A \mid B):=\sum_{b \in \mathcal{Y}} \mathbb{P}(B=b) \cdot d\left(P_{A \mid B=b}\right) .
$$

Show that $d(A \mid B)=\Delta\left((A, B) ;\left(U_{\mathcal{X}}, B\right)\right)$, where $U_{\mathcal{X}}$ is a random variable with uniform distribution over \mathcal{X} and independent from B.
Can you find a game-based interpretation of $d(A \mid B)$ similar to the one in Ex. 2?

Exercise 7: Noticeable functions

A function μ is noticeable iff there exists $c \in \mathbb{N}$ and $n_{0} \in \mathbb{N}$ such that for every $n \geq n_{0}$ we have that $|\mu(n)| \geq n^{-c}$. Answer the following questions:
(a) Is every noticeable function non-negligible?
(b) Is every non-negligible function noticeable?

