Cryptography for Computer Scientists 2018/19

Oct 3, 2018

Exercises 1

Stefan Dziembowski

MIM UW

Let A and B be two random variables that take values from some set finite \mathcal{X} . Define the statistical distance between A and B as

$$\Delta(A;B) := \frac{1}{2} \cdot \sum_{x \in \mathcal{X}} \left| \Pr[A = x] = \Pr[B = x] \right|,$$

and statistical distance of A from uniformity as

$$d(A) := \Delta(A; U),$$

where U has uniform distribution over \mathcal{X} . Analogously Δ can be defined as a distance between two probability distributions $\alpha, \beta : \mathcal{X} \to [0, 1]$ as

$$\Delta(\alpha;\beta) := \Delta(A;B),$$

where A and B are random variables (taking values from \mathcal{X}) that are distributed according to α and β (respectively). A similar convention applies to the distance d from uniformity.

Exercise 1: An alternative definition of statistical distance

Show that for every A and B we have

$$\Delta(A,B) = \sum_{x:\Pr[A=x]>\Pr[B=x]} \Pr[A=x] - \Pr[B=x] \,.$$

Exercise 2: An interpretation of statistical distance

Let α_0 and α_1 be two distributions over some set \mathcal{X} . Consider the following game played by a computationally unbounded machine \mathcal{M} (that knows α_0 and α_1):

- 1. A uniformly random bit $B \leftarrow \{0,1\}$ is chosen.
- 2. A value x is sampled according to distribution α_B and sent to \mathcal{M} .
- 3. \mathcal{M} receives x and produces output B'.

We say that \mathcal{M} won the game if B = B'. Show that

$$\forall_{\mathcal{M}} \Pr[\mathcal{M} \text{ wins the game}] \leq \frac{1 + \Delta(\alpha_0; \alpha_1)}{2}.$$
 (1)

For every α_0 and α_1 show \mathcal{M} that in achieves equality in (1).

Exercise 3: Permuting does not change the distance

Show that for every two random variable A and B that take values from some set finite set \mathcal{X} , and every bijection $f: \mathcal{X} \to \mathcal{X}$ we have that

$$\Delta(f(A); f(B)) = \Delta(A; B).$$

Deduce from this that d(f(A)) = d(A).

Exercise 4: Statistical distance as a metric

Let Π be a set of all probability distributions over some finite set \mathcal{X} . Prove that Δ is a *metric* on this set, i.e., it satisfies the following axioms:

- non-negativity: for every $\alpha, \beta \in \Pi$ we have $\Delta(\alpha; \beta) \geq 0$,
- identity of indiscernibles: for every $\alpha, \beta \in \Pi$ we have that $\Delta(\alpha; \beta) = 0$ implies that $\alpha = \beta$,
- symmetry: for every $\alpha, \beta \in \Pi$ we have that $\Delta(\alpha; \beta) = \Delta(\beta; \alpha)$, and
- triangle inequality: for every $\alpha, \beta, \gamma \in \Pi$ we have that $\Delta(\alpha; \gamma) \leq \Delta(\alpha; \beta) + \Delta(\beta; \gamma)$.

Exercise 5: One-time pad with imperfect randomness

Let (Enc, Dec) be the one-time pad encryption scheme for messages from set $\{0,1\}^t$. Suppose a key K is chosen from $\{0,1\}^t$ according to some distribution α . Consider the guessing game as from the definition of semantic security, that is played between a machine \mathcal{A} and an oracle Ω (however, this time assume that \mathcal{A} is computationally unbounded):

- 1. \mathcal{A} produces two messages $m_0, m_1 \in \{0, 1\}^t$ and sends them to Ω .
- 2. Ω selects $B \leftarrow \{0,1\}$ uniformly at random, samples K according to α and computes $c = \operatorname{Enc}(K, m_B)$, and sends c to A.
- 3. A receives c and produces as output B'

(we assume A knows α). We say that M won the game if B = B'. Show that

$$\forall_{\mathcal{A}} \Pr[\mathcal{A} \text{ wins the game}] \leq \frac{1}{2} + d(\alpha).$$

Exercise 6: Conditional statistical distance

Let A be a random variable over some set \mathcal{X} and let B be a random variable over a set \mathcal{Y} . Define the statistical distance of A from uniformity conditioned on B as

$$d(A|B) := \sum_{b \in \mathcal{V}} \mathbb{P}(B = b) \cdot d(P_{A|B=b}).$$

Show that $d(A|B) = \Delta((A,B);(U_{\mathcal{X}},B))$, where $U_{\mathcal{X}}$ is a random variable with uniform distribution over \mathcal{X} and independent from B.

Can you find a game-based interpretation of d(A|B) similar to the one in Ex. 2?

Exercise 7: Noticeable functions

A function μ is noticeable iff there exists $c \in \mathbb{N}$ and $n_0 \in \mathbb{N}$ such that for every $n \geq n_0$ we have that $|\mu(n)| \geq n^{-c}$. Answer the following questions:

- (a) Is every noticeable function non-negligible?
- (b) Is every non-negligible function noticeable?