
Mining Pools and Security of
Bitcoin

Stefan Dziembowski
University of Warsaw

Introduction to Cryptocurrencies

Plan

1. Mining pools

2. Security of Bitcoin

Mining pools

Miners create cartels called

the mining pools

This allows them to reduce the variance of their
income.

Note

36,000,000 terahash / s

14 terahash/ s

The hashrate of the Antminer S9 mining rig (USD 3,000)

The total hashrate of the
Bitcoin system as of 6.12.2018

number of
blocks in 1

year

The user has to wait on average around 49 years to mine a block
(even if the difficulty does not increase!)

≈ 2,571,428 ≈ 49 ⋅ (365 ⋅ 24 ⋅ 6)

The general picture

The mining pools are operated centrally or are designed in a
p2p way.

Some of the mining pools charge fees for their services.

In other words:

• the expected revenue from pooled mining is slightly lower
than the expected revenue from solo mining,

• but the variance is significantly smaller.

Tricky part: how to prevent cheating by miners? How to reward
the miners?

E.g. if the operator got 12.5 BTC from mining then he will share
12.5 BTC – fee among them
(and keep the fee to himself)

Popular mining pools

As of Dec, 2017:

How to design a mining pool?

Simple idea:

mining pool
operator

miner

a list of transactions 𝐓𝐢 and
a hash 𝐇(𝐁𝐢)

this includes a coinbase
transaction transferring

the reward to 𝐩𝐤.

𝐩𝐤

tries to find
𝐧𝐨𝐧𝐜𝐞 such that

𝐇 𝐧𝐨𝐧𝐜𝐞,𝐇 𝐁𝐢 , 𝐓
𝐢

starts with 𝐧 zeros

current hardness
parameter

if he finds such 𝐧𝐨𝐧𝐜𝐞 then
he sends it to the operator

once 𝐧𝐨𝐧𝐜𝐞 is found by
some of the pool members
each of them is rewarded

proportionally to his
work.

Problem
How to verify how

much work a miner
really did?

A solution: “Proportional method”

mining pool
operator

miner

a list of transactions𝐓𝐢and a hash 𝐇(𝐁𝐢)

tries to find
𝐧𝐨𝐧𝐜𝐞 such that

𝐇 𝐧𝐨𝐧𝐜𝐞,𝐇 𝐁𝐢 , 𝐓
𝐢

starts with 𝐧 zeros

if he finds such a 𝐧𝐨𝐧𝐜𝐞 then he
sends it to the operator

he also submits the “partial
solutions”, i.e. values
𝐧𝐨𝐧𝐜𝐞 such that

𝐇 𝐧𝐨𝐧𝐜𝐞,𝐇 𝐁𝐢 ,𝐓
𝐢

starts with 𝐧′ zeros

𝐧′ ≪ 𝐧

The “amount of work” is measured by the number of “partial
solutions” submitted.

Works if the miners don’t change the pools

𝜶𝟏

𝜶𝟐

𝜶𝟑

𝜶𝟒

≈ proportional to 𝜶𝟏

≈ proportional to 𝜶𝟐

≈ proportional to 𝜶𝟑

≈ proportional to 𝜶𝟒

time

proportion of computing power

probability of that this pool wins: 𝜶𝟏 + 𝜶𝟐 + 𝜶𝟑 + 𝜶𝟒

pool
members

submitted shares

reward for 𝐏𝟏 in case it wins: 𝐁𝐓𝐂 𝟏𝟐. 𝟓 ⋅
𝜶𝟏

𝜶𝟏+𝜶𝟐+𝜶𝟑+𝜶𝟒

𝐏𝟏

expected reward for
𝐏𝟏: 𝐁𝐓𝐂 𝟏𝟐. 𝟓 ⋅ 𝜶𝟏

What if the miners change pools?

𝜶𝟏

𝜶𝟐

𝜶𝟑

𝜶𝟒

time

𝐏𝟏

start a new pool

Now the expected revenue of 𝐏𝟏 is a sum of
• 𝜶𝟏 (from the new pool)
• plus the revenue from the old pool.

A problem with the proportional
method: “Pool hopping”

It is profitable to escape from pools with lots of shares
submitted.

(since such pools have a lot of “mouths to feed” there)

A solution: do not rewarding each share
equally

Example: Slush’s method

Use a scoring function that assigns to each share a score 𝐬.

Then assign rewards proportionally to the score.

Slush’s scoring function: 𝒔 = 𝐞𝐱𝐩
𝐓

𝐂
.

Intuitively: this gives advantage to miners who joined late.

time since the
beginning of this

“round”

some constant

Another solution: “Pay-per-share”

The operator pays per each partial solution no matter if
he managed to extend the chain.

mining pool
operator

miner

partial solution

reward

Major drawback: risky for the operator.

He needs to have some reserves to cover the potential losses.

Other methods

Score-based: Geometric method, Double geometric method,
Pay-per-last-N-shares,

Improved pay-per-share: Maximum pay-per-share, Shared
maximum pay-per-share, Equalized , Shared maximum pay-
per-share,

(see [Meni Rosenfeld, Analysis of Bitcoin Pooled Mining
Reward Systems, 2011], [Okke Schrijvers, Joseph
Bonneau, Dan Boneh, and Tim Roughgarden, Incentive
Compatibility of Bitcoin Mining Pool Reward Functions])

. . .

How secure are these methods

We can assume that the mining pool operator is
honest, since he has a reputation.

Much harder to avoid: attacks from malicious miners.

We discuss two of them:

• “sabotage”,

• “lie-in-wait”.

Both of them are based on withholding certain blocks.

a bit similar to the selfish-
mining attack on Bitcoin
that we discuss later

A “Sabotage”attack on mining pools
Submit only the partial solutions.

mining pool
operator

partial solution

reward complete solution dishonest
miner

Results:
• the pool looses money
• the dishonest miner doesn’t earn anything (also looses a small amount)

Adversary’s goal: make the mining pool bankrupt
(e.g. he owns a competing pool).

It is rumored that in June 2014 such an attack was executed against the
mining pool Eligius. Estimated loses: 300 BTC.

Another attack: “lie-in-wait”

Once you find a solution for 𝐏𝟐 (say):

1. wait with submitting it

2. mine only for 𝐏𝟐

3. submit the solution to 𝐏𝟐 after
some time.

It can be formally shown that this is
profitable (see [Rosenfeld, 2011])

Mine for
several
mining pools:

1/3 computing power mining pool 𝐏𝟐

mining pool 𝐏𝟏

mining pool 𝐏𝟑

Intuition: 𝐏𝟐 is a very
likely winner

Can we have a mining pool without an
operator?

(remember: the operators typically charge a fee).

Answer: yes, using the

Peer-to-peer mining pools.

Peer-to-peer mining pools

General idea: the miners create a
blockchain with hardness parameter
𝐧′ ≪ 𝐧 on top of the last block 𝐁𝐢.
Every 𝐁𝐢

𝟏, 𝐁𝐢
𝟐, … is a valid extension of

𝐁𝐢 (except that the hardness may be
smaller than 𝐧).
The parameter 𝐧′ is chosen is such a
way that a new block appears often
(say: once per 30 sec.)

𝐁𝐢

𝐏𝟏 𝐏𝟐 𝐏𝟑

𝐁𝐢
𝟏 𝐁𝐢

𝟐 𝐁𝐢
𝟑

𝐧 – current hardness
parameter

Hence: this has to be
done using some

other fields in the
block

(fortunately: blocks
have space for this).

How is it done technically?

Bitcoin blocks contain fields that can be used to store H(𝐁𝐢
𝐣
)’s.

H

𝐁𝐢:

…

…

…

𝐁𝐢
𝟏:

H
nonce

H(Bi)

trans.

𝐁𝐢
𝟐:

nonce

H(Bi)

trans.

H(𝐁𝐢
𝟏)

H

𝐁𝐢
𝟑:

nonce

H(Bi)

trans.

H(𝐁𝐢
𝟐)

Finally someone will find a block that
extends 𝐁𝐢 according to Bitcoin rules.

𝐁𝐢

𝐏𝟏 𝐏𝟐 𝐏𝐤

𝐁𝐢
𝟏 𝐁𝐢

𝟐 𝐁𝐢
𝐤. . . 𝐁𝐢+𝟏=:

𝐁𝐢
𝐤 enters the main

Bitcoin’s blockchain
as 𝐁𝐢+𝟏

ends with 𝐧 zeros

call it “final”

How to divide the revenue from mining?

𝐁𝐢

𝐏𝟏 𝐏𝟐 𝐏𝟑

𝐁𝐢
𝟏 𝐁𝐢

𝟐 𝐁𝐢
𝟑

includes in

𝐁𝐢
𝟐 a

payment to
𝐏𝟏

includes in

𝐁𝐢
𝟑 a

payment to
𝐏𝟏 and 𝐏𝟐

if this is missing then other
pool members will not mine
on top of this block

Note: the miner does not know in advance if his block will be final.
He has to choose the payment information beforehand.

Plan

1. Mining pools

2. Security of Bitcoin

Possible attack goals

• double spending,

• get more money from mining
than you should,

• get a full control over the
blockchain

• “short selling” – bet that the price
of BTC will drop and then destroy
the system (to make the price of
BTC go to zero),

• someone (government?)
interested in shutting Bitcoin
down…

“Goldfinger attack”

Note: this can be
done e.g. by a

spectacular fork that
lasts just for a few

hours…

What we do (not) know about Bitcoin’s
security?

Things to consider:

1. Programming errors

2. Transaction malleability

3. Lack of anonymity

4. Hardware mining

5. The “51% attack”

6. Mining pools

7. Selfish mining

8. Potential threats

9. Problems with key storage

Some notable cases of programming errors

• a block 74638 (Aug 2010) contained a transaction with two
outputs summing to over 184 billion BTC – this was
because of an integer overflow in Bitcoin software

(solved by a software update and a “manual fork”)
one double spending observed (worth 10.000 USD).

• a fork at block 225430 (March 2013) caused by an error in
the software update of Bitcoin Core
(lasted 6 hours, solved by reverting to an older version of
the software)

Moral: nothing can be really “completely distributed”.
Sometimes human intervention is needed…

What we do (not) know about Bitcoin’s
security?

Things to consider:

1. Programming errors

2. Transaction malleability

3. Lack of anonymity

4. Hardware mining

5. The “51% attack”

6. Mining pools

7. Selfish mining

8. Potential threats

9. Problems with key storage

Transaction Malleability

T2 = (User P1 sends 1 BTC from T1 to P2 signature of P1 on [T2])

Hash

Hash(T2)

Problem: transactions are identified by their hashes

TxId =

Hence one can change TxId by mauling the signature:

(User P1 sends 1 BTC from T1 to P2 𝝈) (User P1 sends 1 BTC from T1 to P2 𝝈’)

How to do it?

Other methods also exists…

𝝈 = (r,s)

is a valid signature on

M w.r.t. pk

𝝈′ = (r, -s (mod N))

is a valid signature on

M w.r.t. pk

Bitcoin uses ECDSA signatures. Hence:

What can the adversary do?

transaction T mauled T

miners

[Andrychowicz et al 2015]: very easy to perform in practice.

Is it a problem?

Often: NO
(the mauled transaction is semantically equivalent to the
original one)

When things can go wrong?

• Bitcoin contracts

• buggy software

Claimed attack on MtGox

deposits 1 BTC

withdraws 1 BTC
transaction

T = “MtGox sends 1 BTC to A”
A

transaction
T’ = mauled transaction T

blockt blockt+1 blockt+2 blockt+3

Since MtGox cannot see a
transaction with TxId Hash(T) in
the blockchain.

Thus it concludes that the
transaction did not happen.
(so A can double spend)

[Decker and Wattenhofer, ESORICS 2014]: this is probably not true.

What we do (not) know about Bitcoin’s
security?

Things to consider:

1. Programming errors

2. Transaction malleability

3. Lack of anonymity

4. Hardware mining

5. The “51% attack”

6. Mining pools

7. Selfish mining

8. Potential threats

9. Problems with key storage

One obvious problem: lack of anonymity

Can sometimes be de-anonymized…

1 BTC 1 BTC

can be linked
1

 B
T

C

1 BTC 1 BTC

Heuristic solution:
1

 B
T

C

What we do (not) know about Bitcoin’s
security?

Things to consider:

1. Programming errors

2. Transaction malleability

3. Lack of anonymity

4. Hardware mining

5. The “51% attack”

6. Mining pools

7. Selfish mining

8. Potential threats

9. Problems with key storage

Another problem/feature:
hardware mining

History of mining: CPU → GPU → FPGA → ASIC

Examples of ASIC
mining rigs:

Drawbacks of the hardware mining

1. Makes the whole process ``non-democratic”.

2. Easier to attack by very powerful adversary?

3. Excludes some applications (mining a as
“micropayment’’).

?

Advantages of the hardware mining

• Security against botnets.

• Makes the miners interested in the long-term
stability of the system.

How “long term”?

the total hashrate can go up almost
100x in one year…

What we do (not) know about Bitcoin’s
security?

Things to consider:

1. Programming errors

2. Transaction malleability

3. Lack of anonymity

4. Hardware mining

5. The “51% attack”

6. Mining pools

7. Selfish mining

8. Potential threats

9. Problems with key storage

Easy to see
An adversary that controls majority of computing
power can always break the system.

blocki

blocki+1

blocki+2 block’i+2

blocki+3

blocki+4

block’i+3

block’i+4

block’i+5

pays using
transaction T

T Eventually this
branch becomes
longer so he can
“cancel T” and
double spend.

Moreover: “a 51% adversary can get a
full control over the blockchain”

mines only
on top of his
own blocks

blocki

blocki+1

blocki+2

blocki+3

blocki+4

blocki+5

blocki+6

block’i+2

block’i+4

block’i+5

since he has > 50% of
computing power

eventually his blocks
will always win

What can he do then?

1. Censor transactions

2. Publish only empty blocks

3. Ask for very high fees

…

What is the cost of the “51% attack”?

Current estimate (gobitcoin.io/tools/cost-51-attack):

Observation: maybe a rich adversary would not even need to pay
this.

(it’s enough that he convinces everybody that he is really going to
attack Bitcoin)

Why?

around 9% of
Bitcoin’s market

capitalization

How to break Bitcoin?

1. Announce that you are going to invest $4 billion to
break Bitcoin.

2. Start buying second-hand hardware from miners

3. Once the miners get convinced that BTC will be
broken they will sell it to you very cheaply

4. So the total cost of your attack will be much less
than $4 billion

Will the miners sell their equipment to you?

From the point of view of game theory: they should…

What is really our security assumption?

“As long as a majority of
CPU power is controlled by

nodes that are not
cooperating to

attack the network, they'll
generate the longest chain

and outpace attackers”

we proposed a peer-to-
peer network using proof-
of-work to record a public
history of transactions that
quickly becomes
computationally
impractical for an
attacker to change if
honest nodes control a
majority of CPU power

1. No cartel controls the majority of the computing power,
or

2. The majority of participants is 100% honest.

?

In order for the Bitcoin to work we need a
following (strong) assumption:

The majority behaves honestly even if it has incentives not to
do so.

Is it realistic?

enthusiast:

sceptics:

Yes, since the majority is
interested in maintaining the

system

No, since this is not how
capitalism works…

What we do (not) know about Bitcoin’s
security?

Things to consider:

1. Programming errors

2. Transaction malleability

3. Lack of anonymity

4. Hardware mining

5. The “51% attack”

6. Mining pools

7. Selfish mining

8. Potential threats

9. Problems with key storage

Risk associated to pooled mining

June 2014: the Ghash.io pool got > 50% of the total
hashpower.

Then this percentage went down…

Observation

What we were promised:

“distributed currency independent from the central
banks”

What we got (in June 2014):

“currency controlled by a single company”…

A problem

Individual miners sometimes do not control over what they
mine.

For example in the Stratum protocol (commonly used by
mining pools):

miners cannot choose Bitcoin transactions on their own

From mining.bitcoin.cz/stratum-mining:

“In my experience 99% of real miners don’t care about
transaction selection anyway, they just want the highest possible
block reward. At this point they share the same interest with pool
operator, so there’s no real reason to complicate mining protocol just
for those 1% who want to create custom blocks for the pool.”

How to break Bitcoin? – version 2

1. Start a number of mining pools with a negative fee.

2. Wait until you get >50% of the total hashrate.

Will the miners join?

they just want the
highest possible block

reward…

Another risk

Why not to rent the hashpower to perform the attack?

Conjecture

Maybe the only reason why nobody broke Bitcoin
yet is that nobody was really interested in doing it?

(until recently it was impossible to short Bitcoin)

How to analyze it?

Use a game-theoretic model.

See:

[Joseph Bonneau, Edward W. Felten, Steven
Goldfeder, Joshua A. Kroll and Arvind Narayanan,
Why buy when you can rent? Bribery attacks on
Bitcoin consensus, 2014]

What we do (not) know about Bitcoin’s
security?

Things to consider:

1. Programming errors

2. Transaction malleability

3. Lack of anonymity

4. Hardware mining

5. The “51% attack”

6. Mining pools

7. Selfish mining

8. Potential threats

9. Problems with key storage

It turns out that even a dishonest
minority can attack Bitcoin...

Selfish mining
Ittay Eyal, Emin Gun Sirer Majority is not Enough: Bitcoin Mining is
Vulnerable

Basic idea: when you mine a new block keep it to yourself (also called
block withholding strategy).

Goal: make the honest miners waste their effort at mining blocks that
will never make it to the chain.

Observe

• the proportion of the blocks that you mine will be higher than it
should be,

• hence: you will earn more than your share of computing power
(since Bitcoin adjusts the difficulty)

Why is it bad?
If there is a strategy that is more beneficial than the
honest strategy then miners have an incentive to
misbehave (“Bitcoin is not incentive compatible”)

(recall that with the honest strategy every miner whose
computing power is an 𝜶-fraction of the total computing
power gets an 𝜶-fraction of the revenue)

Moreover: the larger 𝜶 is the more beneficial this strategy is.

Therefore: the miners have incentives to join a large pool that
uses this strategy.

fraction of revenuefraction of computing power

A simplifying assumption (for a
moment)
What happens when there is a fork?

Bitcoin specification:

“from two chains of equal length mine on the first one that you received”.

Assume that the adversary is always first (e.g. he puts a lot
of “fake nodes” that act as sensors).

An observation

Assume that the adversary does
not broadcast the new block that
he found (and mines on it
“privately”).

Two things can happen:

1. the adversary manages to
extend his “private block
chain” by one more block, or

2. the “honest users” manage
to find an alternative
extension.

blocki

blocki+1

blocki+2
block’i+2

blocki+3

In this case the adversary
quickly publishes his block

so he looses nothing

If the adversary is lucky then he obtains
advantage over the honest miners.

blocki

blocki+1

block’i+2 blocki+2

blocki+3

blocki+4

blocki+5

block’i+3

block’i+4

block’i+5

he publishes his chain if the
“public chain” equalizes with it

the reward for these
blocks goes to him

Note: this works even if the adversary has minority of computing power.

Full attack

The assumption that “the adversary is always first”
may look unrealistic.

Eyal and Sirer show a modification of this strategy
that works without this assumption.

𝜸 − probability that an honest user chooses
adversary’s block

𝜶 – fraction of adversary’s computing power

We present it on next slides.

Note
𝜸 − probability that an honest user chooses adversary’s block

𝜶 – fraction of adversary’s computing power

the probability that the adversary
wins if there is a fork is equal to

𝜶 + 𝟏 − 𝜶 𝜸

the adversary
extends the
chain

an honest
miners extend
the chain

they extend
adversary’s chain

they extend the
“honest” chain

prob. 𝜶

prob. 𝟏 − 𝜶
prob. 𝜸

prob. 𝟏 − 𝜸

Why? denote it 𝜹

At the beginning of the attack we have:

initial state: someone mined a new block and everyone
is trying to extend it

state 𝟎

First step: if the adversary finds a new block – he keeps
it private.

the honest miners
also find a block

adversary finds
another block on
top of his old one

the adversary
published his

block ASAP

“honest block”
won

“adversary’s block”
won

state 𝟎

prob. 𝟏 − 𝜶 prob. 𝜶

prob. 𝟏 − 𝜹 prob. 𝜹

state 𝟏

state 𝟎′

state 𝟎 state 𝟎

state 𝟐

the adversary
found a new

block

From state 𝟐:

state 𝟐

state 𝟑

the adversary
publishes his
chain ASAP

state 𝟎

prob. 𝜶

prob. 𝟏 − 𝜶

In general for 𝒊 ≥ 𝟐

state 𝒊

𝒊

state 𝒊:

“the adversary has
advantage 𝒊 over the
honest miners”

This leads to the following state
machine:

state 𝟎

state 𝟎′

state 𝟏 state 𝟐 state 𝟑 state 𝟒 . . .

𝜶 𝜶 𝜶 𝜶

𝟏 − 𝜶𝟏 − 𝜶𝟏 − 𝜶𝟏 − 𝜶

𝜶

𝟏 − 𝜶𝟏

This converges to some stationary
distribution 𝐩𝟎, 𝐩𝟎′ , 𝐩𝟏, 𝐩𝟐, 𝐩𝟐, …

We can find it using the theory of Markov chains

𝐩𝟎

𝐩𝟎′

𝐩𝟏 𝐩𝟐 𝐩𝟑 𝐩𝟒 . . .

𝜶 𝜶 𝜶 𝜶

𝟏 − 𝜶𝟏 − 𝜶𝟏 − 𝜶𝟏 − 𝜶

𝜶

𝟏 − 𝜶𝟏

How to calculate adversary’s revenue?

state 𝟎

state 𝟎′

state 𝟏 state 𝟐 state 𝟑 state 𝟒 . . .

+𝟏 +𝟏 +𝟏 +𝟏

(∗)

∗ = +𝟏 iff the adversary “won a fork”.
This happens with probability 𝜹.

Look when the adversary “earns a block”:

Hence the expected revenue of the adversary is equal to:

𝜹 ⋅ 𝒑𝟎′ + 𝜶 ⋅ 𝒑𝟏 + 𝜶 ⋅ 𝒑𝟐 +⋯

The final result

Eyal and Sirer calculate this, and show that their
strategy works as long as α >

𝟏−𝜸

𝟑 −𝟐𝜸

They also show that the larger 𝜶 is the more beneficial
this strategy is.

α

𝜸

How to fix it?

One simple idea to make 𝜸 =
𝟏

𝟐
:

Instruct the miners to mine on a random chain
(in case they receive to equal ones)

Another clever attack

Lear Bahack Theoretical Bitcoin Attacks with less
than Half of the Computational Power

The “Difficulty Raising Attack” – exploits the way the
difficulty is adjusted in Bitcoin.

What we do (not) know about Bitcoin’s
security?

Things to consider:

1. Programming errors

2. Transaction malleability

3. Lack of anonymity

4. Hardware mining

5. The “51% attack”

6. Mining pools

7. Selfish mining

8. Potential threats

9. Problems with key storage

Blocks without transactions

Example:

Reason: shorter blocks propagate faster.

In the future the opposite problem can
happen

When the mining reward becomes negligible, we can
experience:

Tragedy of the commons:
adding a transaction costs nothing, so the miners will not
be able to keep the transaction fees high.

Another question

Verification of blocks takes time.

Maybe it’s cheaper not to verify?

(“verifier's dilemma”)

(more relevant to Ethereum)

See [Luu, Teutsch, Kulkarni, Saxena, Demystifying
incentives in the consensus computer, ACM CCS
2015].

Recall that verification
includes checking all

transactions

Yet another question

What happens if someone posts a transaction T with
a very high fee (say 100 BTC)?

blocki+1block1

blocki+2

for them it’s more
profitable to mine on

the old block

Quantum attacks

Q: If quantum computers are built – can then “break
blockchain”?

A: Yes, because ECDSA signature scheme is vulnerable
to quantum attacks

Solutions:

• according to cryptographers: use post-quantum
signatures

• according to physicist: construct a “quantum
blockchain”

Recent article in “Nature”

“Yet, within ten years, quantum
computers will be able to calculate the

one-way functions, including blockchains,
that are used to secure the Internet and
financial transactions. Widely deployed

one-way encryption will instantly become
obsolete.”

What we do (not) know about Bitcoin’s
security?

Things to consider:

1. Programming errors

2. Transaction malleability

3. Lack of anonymity

4. Hardware mining

5. The “51% attack”

6. Mining pools

7. Selfish mining

8. Potential threats

9. Problems with key storage

A practical problem: How to store the
bitcoins?
• storing in plaintext on the PC – bad idea (malware attacks)

• encrypting with a password – susceptible to the dictionary
attacks

• better: split the key between several devices. Two options:
• use the “multisignature feature of Bitcoin
• use secret sharing and the MPCs

• store on the USB memory – also susceptible to malware (once
connected to the PC).

• use a smarter device – more secure,
especially if it has a display:

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or
all of this material is currently granted without fee provided that copies are made
only for personal or classroom use, are not distributed for profit or commercial
advantage, and that new copies bear this notice and the full citation.

