
Cryptography for Computer Scientists 2018/19 Nov 21, 2018

Exercises 8

Stefan Dziembowski MIM UW

Exercise 1: H̊astad low exponent attack

Let (N1, d1), (N2, d2), and (N3, d3) be the RSA secret keys (chosen randomly), and let (N1, 3), (N2, 3),
and (N3, 3) be the corresponding public keys (i.e. the public exponent e is always set to 3). Suppose
the adversary learns ciphertexts of some message m < N1, N2, N3 with respect to these keys, i.e.,
m3 mod N1,m

3 mod N2, and m3 mod N3. Show how he can compute m from this information.

Exercise 2: Fault attacks on RSA

Let N = pq be an RSA modulus, and let CRT : ZN → Zp × Zq be the function from the Chinese
Remainder Theorem, i.e., CRT(x) = (x mod p, x mod q). Consider the following algorithm for
computing RSA decryption.

Decd,N (c)

1 : (a, b) := CRT(c)

2 : a′ := ad mod N

3 : b′ := bd mod N

4 : return CRT−1(a′, b′)

Suppose the adversary gets input-output access to a device that contains (d,N) and decrypts RSA
according to the above algorithm. Assume that later he gets access to the same device that makes
one error during computation in Step 2 or 3, i.e., computes wrong a′ or wrong b′. Show how the
adversary can factor N .

Exercise 3: Random self reducibility of discrete log

Let (G,×) be a finite group and let g be its generator. Suppose M is an oracle that on random
input h ∈ G produces as output a value logg h with probability p. Show an algorithm that takes as
input a value f ∈ G, runs in time linear in a parameter k, asks k queries to M , and outputs logg f

with probability 1− (1− p)k (for every f).

Exercise 4: Baby-step giant-step algorithm

Let (G,×) be a cyclic group with a generator g. Show an algorithm that computes the discrete log
in G (with base g) using O(

√
|G|) exponentiations and Õ(log2 |G|) space.

1

Exercise 5: Backdoor in the Dual Elliptic Curve Deterministic Random Bit Generator

Let E be an elliptic curve group with prime order defined over some Zp in which computing discrete
log is hard. For (x, y) ∈ E define ϕ(x, y) = x. For x ∈ Zp let suffix(x) be the binary representation
of x without the first 16 bits, i.e.:

suffix(x) = (y17, . . . , ym),

where (y1, . . . , ym) is the binary representation of x. Let P,Q be generators of E. Consider the
following algorithm Dual EC DRBG that takes as input s0 ∈ E, and produces as output blocks of
bits w0, w1, . . . (where each wi ∈ {0, 1}m−16):

Dual EC DRBG(s0)

for i = 0, 1, . . .

ri := ϕ(si × P)

ti := ϕ(r1 ×Q)

si+1 := ϕ(ri × P)

output wi := suffix(ti)

Suppose the adversary knows the discrete log of P with base Q, i.e., he knows e such that e×Q = P .
Show how he can compute w2, w3, . . . from (w0, w1) (with high probability).

2

	Håstad low exponent attack
	Fault attacks on RSA
	Random self reducibility of discrete log
	Baby-step giant-step algorithm
	Backdoor in the Dual Elliptic Curve Deterministic Random Bit Generator

