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Multi-party computations (MPC)

𝑷𝟓

𝑷𝟏

𝑷𝟑𝑷𝟐

𝑷𝟒

input 𝒂𝟏

input 𝒂𝟐 input 𝒂𝟑

input 𝒂𝟒

input 𝒂𝟓

they want to compute 
some value

𝒇(𝒂𝟏, 𝒂𝟐, 𝒂𝟑, 𝒂𝟒, 𝒂𝟓)
for a publicly-known 𝒇.

a group of parties:

Before we considered this 
problem for 𝒏 = 𝟐
parties.

Now, we are interested in 
arbitrary groups of 𝒏
parties.

output
𝒇(𝒂𝟏, 𝒂𝟐, 𝒂𝟑, 𝒂𝟒, 𝒂𝟓)



Examples

𝑷𝟓

𝑷𝟏

𝑷𝟑𝑷𝟐

𝑷𝟒

input 𝒂𝟏

input 𝒂𝟐 input 𝒂𝟑

input 𝒂𝟒

input 𝒂𝟓

A group of millionaires wants to 
compute how much money they own 
together.

𝒇(𝒂𝟏, 𝒂𝟐, 𝒂𝟑, 𝒂𝟒, 𝒂𝟓)
= 𝒂𝟏+ 𝒂𝟐+ 𝒂𝟑+ 𝒂𝟒+ 𝒂𝟓

Another example: voting



The general settings

Each pair of parties is connected 
by a secure channel.

(assume also that the network is 
synchronous)

Some parties may be corrupted.

The corrupted parties may act in 
coalition.𝑷𝟓

𝑷𝟑

𝑷𝟐

𝑷𝟒
𝑷𝟏



How to model the coalitions of 
the corrupted parties?

We assume that there exists 
one adversary that can 
corrupt several parties.

Once a parity is corrupted the 
adversary “takes control over 
it”. 

what it means 
depends on 
the settings



Threshold adversaries

In the two-party case we considered an adversary 
that could corrupt one of the players.

Now, we assume that the adversary can corrupt 
some subset of the players.

The simplest case:

set some threshold 𝒕 < 𝒏 and allow the adversary 
to corrupt up to 𝒕 players.



Example
𝒏 = 𝟓, 𝒕 = 𝟐

𝑷𝟓

𝑷𝟏

𝑷𝟑𝑷𝟐

𝑷𝟒



Types of adversaries

As before, the adversary can be:

• computationally bounded, or

• infinitely powerful,

and

• passive

• active

These choices are orthogonal!

computationally 
bounded

infinitely 
powerful

passive

active

all those 
choices make 

sense!



Adaptivness

In addition to it the adversary may be

• adaptive – he may decide whom to corrupt during 
the execution of the protocol, or

• non-adaptive – he has to decide whom to corrupt, 
before the execution starts.



The security definition

The security definition is complicated and we do not present it here.

Main intuition: the adversary should not be able to do more damage in the 
“real” scenario than he can in the “ideal” scenario.

Remember the two-party case?

𝑨 𝑩

𝒇(𝑨, 𝑩) 𝒇(𝑨, 𝑩)

𝑨 𝑩

𝒇(𝑨, 𝑩) 𝒇(𝑨, 𝑩)

𝑨

𝒇(𝑨, 𝑩) 𝒇(𝑨, 𝑩)

𝑩
protocol

𝝅

“ideal” scenario“real” scenario



The “real scenario” 

𝑷𝟓

𝑷𝟏

𝑷𝟑𝑷𝟐

input 𝒂𝟏

input 𝒂𝟐 input 𝒂𝟑

input 𝒂𝟒

input 𝒂𝟓

output:
𝒇(𝒂𝟏, … , 𝒂𝟓)

output:
𝒇(𝒂𝟏, … , 𝒂𝟓)

output:
𝒇(𝒂𝟏, … , 𝒂𝟓)

output:
𝒇(𝒂𝟏, … , 𝒂𝟓)

output:
𝒇(𝒂𝟏, … , 𝒂𝟓)

𝑷𝟒
protocol 𝝅



The “ideal” scenario

𝑷𝟏

𝑷𝟑𝑷𝟐

input 𝒂𝟏

input 𝒂𝟐 input 𝒂𝟑

input 𝒂𝟒

input 𝒂𝟓

output:
𝒇(𝒂𝟏, … , 𝒂𝟓)

output:
𝒇(𝒂𝟏, … , 𝒂𝟓)

output:
𝒇(𝒂𝟏, … , 𝒂𝟓)

output:
𝒇(𝒂𝟏, … , 𝒂𝟓)

output:
𝒇(𝒂𝟏, … , 𝒂𝟓)

𝑷𝟒

computes 𝒇

𝑷𝟓
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Classical results
Question:

For which values of the parameter 𝒕 multi-party computations are 
possible (for every poly-time computable function 𝒇)? 

𝒏 – the number of players

setting adversary
type

conditio
n

computational passive 𝒕 < 𝒏

computational active 𝒕 < 𝒏/𝟐

information-theoretic passive 𝒕 < 𝒏/𝟐

information-theoretic active 𝒕 < 𝒏/𝟑

(Turns out that the 
adaptivness doesn’t matter)

this can be improved to 
𝒕 < 𝒏/𝟐

if we add a “broadcast channel”

(these are tight bounds)

this can be improved to 
𝒕 < 𝒏

if we give up “fairness”



Example of a lower bound

information-theoretic, passive: 𝒕 < 𝒏/𝟐

Suppose 𝒏 = 𝟔 and 𝒕 = 𝟑

Suppose we have a protocol for computing
𝒇(𝒂𝟏, 𝒂𝟐, 𝒂𝟑, 𝒂𝟒, 𝒂𝟓, 𝒂𝟔) = 𝒂𝟏 ∧ 𝒂𝟐 ∧ 𝒂𝟑 ∧ 𝒂𝟒 ∧ 𝒂𝟓 ∧ 𝒂𝟔

We show an information-theoretically secure 2-party 
protocol for computing

𝑭 𝑨,𝑩 = 𝑨 ∧ 𝑩

After showing this we will be done, since we know it’s 
impossible!



𝑷𝟏

input 𝒂𝟏

𝑷𝟐

input 𝒂𝟐

𝑷𝟑

input 𝒂𝟑

input 𝒂𝟔

𝑷𝟔

input 𝒂𝟓

𝑷𝟓

input 𝒂𝟒

𝑷𝟒

simulates with
𝒂𝟓 ∶= 𝑩

𝒂𝟓: = 𝒂𝟔 ≔ 𝟏

simulates with
𝒂𝟏 ∶= 𝑨

𝒂𝟐 ≔ 𝒂𝟑 ≔ 𝟏
the “internal” 
messages are 
not sent 
outside 

the “external” 
messages are 
exchanged 
between 
Alice and Bob



Correctness?

At the end of the execution of the simulated protocol 
Alice and Bob know

𝒇 𝑨, 𝟏, 𝟏, 𝑩, 𝟏, 𝟏 = 𝑨 ∧ 𝑩

So they have computed F.



Why is this protocol secure?

If the adversary corrupted Alice or Bob then he 
“corrupted” exactly 𝒕 = 𝟑 parties.

From the security of the MPC protocol the “new” 
𝟐-party protocol is also secure!



A broadcast channel

𝑷𝟓

𝑷𝟏

𝑷𝟑
𝑷𝟐

𝑷𝟒

mmmm

Every player receives the same message (even if the sender is malicious).

m𝒎



Byzantine Agreement
A classical problem in distributed computing [Lamport, Shostak, Pease, 
1982]:

• 𝒏 generals (connected with private channels) want to reach a consensus

• there may be 𝒕 traitors among them

𝒃𝟒 ∈
{attack,retreat}

𝒃𝟐 ∈
{attack,retreat}

𝒃𝟏 ∈
{attack,retreat}

𝒃𝟓 ∈
{attack,retreat}

𝒃𝟑 ∈
{attack,retreat}



Formally

We have the following requirements

• Non-triviality: If all loyal generals have the same 
input bit 𝒃 then, the only possible decision value 
of the loyal generals is 𝒃. 

• Agreement: The loyal generals should agree on 
the decision. 

• Limited bureaucracy: The protocol must 
terminate



A classical result

Byzantine agreement is possible if and only if 

𝒕 < 𝒏/𝟑



Broadcast channel vs. byzantine 
agreement
If the broadcast channel is available then the 

byzantine agreement can be achieved as 
follows:

1. every party 𝑷𝒊 broadcasts her input 𝒔𝒊
2. the majority of the broadcasted values is the 

agreed value.



Fact

In the information-theoretic settings:

a broadcast channel can be “emulated” by a 
multiparty protocol.



Emulation

𝑷𝟓

𝑷𝟏

𝑷𝟑𝑷𝟐

input 𝒎

output: 𝒎

output: 𝒎

output: 𝒎 output: 𝒎

output: 𝒎

𝑷𝟒

So, this is the reason, why in the 
information theoretic, active 

case we have  𝒕 < 𝒏/𝟑



Idea
Allow the parties to use a broadcast channel.

We get:

setting adversary
type

condition

information-
theoretic

passive 𝒕 < 𝒏/𝟐

information-
theoretic

active 𝒕 < 𝒏/𝟑

information-
theoretic

(with broadcast)
active 𝒕 < 𝒏/𝟐
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How to construct such protocols?

The general scheme is like in the two-party case:

1. Represent the function as a circuit.

2. Let every party “share” her input with the 
other parties.

3. Evaluate the circuit gate-by-gate 
(maintaining the invariant that the values of the 
intermediary gates are shared between the 
parties)

4. Reconstruct the output.

usually: arithmetic circuit over some field



Arithmetic circuits (over a field F)

𝒂𝟎 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒂𝟓 𝒂𝟔 𝒂𝟕

+

*

+

+

+*

*

+
*

*

𝒄𝟏

*

𝒄𝟐 𝒄𝟓𝒄𝟒𝒄𝟑

input gates

output gates

multplication
gates

addition
gates



How to share a secret?

Informally:

We want to share a secret 𝑺 between a group of 
parties, in such a way that:

1. any set of up to 𝒕 corrupted parties has no 
information on 𝑺, and

2. if 𝒕 + 𝟏 parties cooperate then they can 
reconstruct the secret 𝑺.



𝒎-out-of-𝒏 secret sharing

dealer’s secret 𝑺

𝑺𝟏 𝑺𝟓𝑺𝟑𝑺𝟐 𝑺𝟒

1. Every set of at least 𝒎 players can reconstruct 𝑺.
2. Any set of less than 𝒎 players has no information about 𝑺.

note: this primitive assumes that the adversary is passive

(𝒏 = 𝟓)

𝒎 = 𝒕 + 𝟏



Every secret sharing protocol consists of

• a sharing procedure: 𝑺𝟏, … , 𝑺𝒏 ≔ 𝐬𝐡𝐚𝐫𝐞(𝑺)

• a reconstruction procedure:
for any distinct 𝒊𝟏, … , 𝒊𝒎 we have 𝑺 ≔ 𝐫𝐞𝐜𝐨𝐧𝐬𝐭𝐫𝐮𝐜𝐭(𝑺𝒊

𝟏
, … , 𝑺𝒊𝒎)

• a security condition:
for every 𝑺, 𝑺’ and every 𝒊𝟏, … , 𝒊𝒎−𝟏: 

𝑺𝒊𝟏 , … , 𝑺𝒊𝒎−𝟏
and 𝑺𝒊𝟏

′ , … , 𝑺𝒊𝒎−𝟏

′ are distributed identically,

where:

𝑺𝟏, … , 𝑺𝒏 ≔ 𝐬𝐡𝐚𝐫𝐞(𝑺) and (𝑺𝟏
′ , … , 𝑺𝒏

′ ) ∶= 𝐬𝐡𝐚𝐫𝐞(𝑺’)

matching

𝒎-out-of-𝒏 secret sharing – more 
formally



Shamir’s secret sharing [1/2]

1 2 3 n. . .

𝒇(𝟏)

𝒇(𝒏)𝒇(𝟑)

𝒇(𝟐)

𝑷𝟏 𝑷𝟐 𝑷𝟑 𝑷𝒏. . .

S

0

Suppose that 𝑺 is an element of some finite field 𝐅, such that |𝐅| > 𝒏
𝒇 – a random polynomial of degree 𝒎− 𝟏 over 𝐅 such that 𝒇(𝟎) = 𝑺

sharing:



Given 𝒇(𝒊𝟏), … , 𝒇(𝒊𝒎) one can interpolate the 
polynomial 𝒇 in point 𝟎.

Shamir’s secret sharing [2/2]

reconstruction:

security:

One can show that 𝒇(𝒊𝟏), … , 𝒇 𝒊𝒎−𝟏 are 
independent from 𝒇(𝟎).



How to construct a MPC protocol on 
top of Shamir’s secret sharing?

Observation

Addition is easy...

Why?

Because polynomials are homomorphic with respect 
to addition.



Polynomials are homomorphic with 
respect to addition 

1 2 n. . .

𝒇(𝟏)

𝒇(𝒏)𝒇(𝟑)

𝑺

0

𝑺′

𝒈(𝟏)

𝒈(𝟑)
𝒈(𝒏)

𝑺 + 𝑺′

𝒇(𝟏) + 𝒈(𝟏)

𝒇(𝟑) + 𝒈(𝟑)
𝒇(𝒏) + 𝒈(𝒏)

degree 𝒕

degree 𝒕

degree 𝒕



Addition

sharing

secret 𝒂

sharing

secret 𝒃

sharing

secret 𝒂 + 𝒃 The parties can 
compute it non-
interactively, by 
adding their shares 
locally! 



How can we use it?

We can construct a protocol for computing

𝒇(𝒂𝟏, … , 𝒂𝒏) ∶= 𝒂𝟏+ · · · + 𝒂𝒏

This protocol will be secure against an adversary 
that 

• corrupts up to 𝒕 parties and is

• passive, and

• information-theoretic.



A protocol for computing
𝒇 𝒂𝟏, … , 𝒂𝒏 ≔ 𝒂𝟏 + · · · + 𝒂𝒏

1. Each party 𝑷𝒊 shares her input using a (𝒕 + 𝟏)-out-of-𝒏
Shamir’s secret sharing.
Let 𝒂𝒊

𝟏, … , 𝒂𝒊
𝒏 be the shares.

Therefore at the end we have quadratic number of shares

𝒂𝟏
𝟏 ⋯ 𝒂𝒊

𝟏 ⋯ 𝒂𝒏
𝟏

⋮ ⋮ ⋮

𝒂𝟏
𝒋 ⋯ 𝒂𝒊

𝒋 ⋯ 𝒂𝒏
𝒋

⋮ ⋮ ⋮

𝒂𝟏
𝒏 ⋯ 𝒂𝒊

𝒏 ⋯ 𝒂𝒏
𝒏

𝒂𝟏 𝒂𝒊 𝒂𝒏



2. Each 𝑷𝒋 computes a sum of the shares that he 
received

this is 
what 𝑷𝒋

received 
in Step 1

𝒂𝟏
𝟏 ⋯ 𝒂𝒊

𝟏 ⋯ 𝒂𝒏
𝟏

⋮ ⋮ ⋮

𝒂𝟏
𝒋 ⋯ 𝒂𝒊

𝒋 ⋯ 𝒂𝒏
𝒋

⋮ ⋮ ⋮

𝒂𝟏
𝒏 ⋯ 𝒂𝒊

𝒏 ⋯ 𝒂𝒏
𝒏

𝒃𝟏 ≔෍

𝒊

𝒂𝒊
𝟏

𝒃𝒋 ≔෍

𝒊

𝒂𝒊
𝒋

𝒃𝒏 ≔෍

𝒊

𝒂𝒊
𝒏

⋮

⋮



The final steps:

3. Each party 𝑷𝒋 broadcasts 𝒃𝒋

4. Every party can now reconstruct
𝒇 𝒂𝟏, … , 𝒂𝒏 ≔ 𝒂𝟏+ · · · + 𝒂𝒏

by interpolating the shares 𝒃𝟏, … , 𝒃𝒏

It can be shown that no coalition of up to 𝒕 parties 
can break the security of the protocol.

(Even if they are infinitely-powerful)



How to construct a protocol for 
any function
Polynomials are homomorphic also with respect to 

multiplication.

Problem

The degree gets doubled...

Hence, the construction of such protocols is not-
trivial.  

But it is possible! [exercise]
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General adversary structures

Sometimes assuming that the adversary can corrupt 
up to 𝒕 parties is not general enough.

It is better to consider arbitrary coalitions of the 
sets of parties that can be corrupted.



Example of coalitions



Adversary structures

𝚫 is an adversary structure over the set of players 
{𝑷𝟏, … , 𝑷𝒏} if:

𝚫 ⊆ 𝟐 𝑷𝟏,…,𝑷𝒏

and for every 𝑨 ∈ 𝚫

if 𝑩 ⊆ 𝑨 then 𝑩 ∈ 𝚫

This property is called monotonicity.
Because of this, to specify 𝚫 it is enough to specify a set 𝑴 of its 

maximal sets.
We will also say that 𝑴 induces 𝚫.



What about “𝒕 < 𝒏/𝟑”? 
We say that a structure 𝚫 is Q3 if

∀𝑨,𝑩,𝑪∈𝚫 𝑨 ∪ 𝑩 ∪ 𝑪 ≠ 𝑷𝟏, … , 𝑷𝒏

How to generalize the condition that 𝒕 < 𝒏/𝟐?
We say that a structure 𝚫 is Q2 if

∀𝑨,𝑩∈𝚫 𝑨 ∪ 𝑩 ≠ 𝑷𝟏, … , 𝑷𝒏

Q2 and Q3 structures

We say that 𝑨 is a 𝚫-adversary if he can corrupt only 
the sets in 𝚫.



A generalization of the classical 
results

setting
adversary

type
condition

generalized
condition

information-
theoretic

passive 𝒕 < 𝒏/𝟐 Q2

information-
theoretic

active 𝒕 < 𝒏/𝟑 Q3

information-
theoretic
with broadcast

active 𝒕 < 𝒏/𝟐 Q2

[Martin Hirt, Ueli M. Maurer: Player Simulation and General Adversary 
Structures in Perfect Multiparty Computation. J. Cryptology, 2000]



There is one problem, though...

What is the total number of possible adversary 
structures?

Fact

It is doubly-exponential in the number of players.



Why?

{𝑷𝟏, … , 𝑷𝒏}

(suppose 𝒏 is even)

𝑿 := family of sets of cardinality 𝒏/𝟐

𝑿 =
𝒏
𝒏/𝟐 ≥ 𝟐𝒏/𝟐

inclusion is a partial order on the set of subsets of {𝑷𝟏, … , 𝑷𝒏}

∅



On the other hand...

Every subset of 𝑿 induces a different adversary 
structure. 

Hence the set of all adversary structures has cardinality 
at least:

𝟐|𝑿| ≥ 𝟐𝟐
𝒏/𝟐

(𝑿 := family of sets of cardinality 𝒏/𝟐 )



So, we have a problem, because

On the other hand

The number of poly-time protocols is just 
exponential in the size of the input.

Hence

If the number of players is super-logarithmic, we 
cannot hope to have a poly-time protocol for 
every adversary structure.



What to do?

Consider only those adversary structure that “can 
be represented in polynomial space”.

For example see:

Ronald Cramer, Ivan Damgård, Ueli M. Maurer: 
General Secure Multi-party Computation 
from any Linear Secret-Sharing Scheme. 
EUROCRYPT 2000
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Practical implementation

Peter Bogetoft et al. Multiparty 
Computation Goes Live. 
2009

The Danish farmers can now 
bet in a secure way for the 
contracts to deliver sugar 
beets.



Efficiency



Other applications

Distributed cryptography is also used in the following way.

Suppose we have a secret key 𝒔𝒌 (for a signature scheme) and 
we do not wan to store it on on machine.

Solution:

1. share 𝒔𝒌 between 𝒏 machines 𝑷𝟏, … , 𝑷𝒏

2. “sign” in a distributed way (without reconstructing 𝒔𝒌)

see e.g.:
Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, Tal 
Rabin: Robust Threshold DSS Signatures. EUROCRYPT 
1996
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