Lecture 7 A Brush-up on Number Theory and Algebra

Stefan Dziembowski

www.crypto.edu.pl/Dziembowski

University of Warsaw

14.11.18

version 1.0

Plan

- 1. Role of number theory in cryptography
- 2. Classical problems in computational number theory
- 3. Finite groups
- 4. Cyclic groups, discrete log
- 5. Group Z_N^* and its subgroups
- 6. Elliptic curves

Number theory in cryptography - advantages

- 1. security can (in principle) be based on **famous mathematical conjectures**,
- the constructions have a "mathematical structure", this allows us to create more advanced constructions (public key encryption, digital signature schemes, and many others...).
- the constructions have a natural security parameter (hence they can be "scaled").

Additional advantage

a **practical application** of an area that was **never believed to be practical**... (a wonderful argument for all theoreticians!)

Number theory in cryptography disadvantages

- 1. cryptography based on number theory is much **less efficient**!
- 2. the number-theoretic "structure" may help the cryptoanalyst...

Number theory as a source of hard problems

In this lecture we will look at some basic number-theoretic problems,

identifying those that **may be useful in cryptography**.

Plan

- 1. Role of number theory in cryptography
- 2. Classical problems in computational number theory
- 3. Finite groups
- 4. Cyclic groups, discrete log
- 5. Group Z_N^* and its subgroups
- 6. Elliptic curves

Famous algorithmic problems in number theory

factoring:

<u>input</u>: $a \in \mathbb{N}$ <u>output</u>: factors of a

this problem is <u>believed to be</u> <u>computationally hard</u> if a is a product of two long random primes p and q, of equal length.

Primality testing

x – the number that we want to test

Sieve of Eratosthenes (ca. 240 BC): takes \sqrt{x} steps, which is exponential in $|x| = \log_2 x$

Miller-Rabin test (late 1970s) is probabilistic:

- if **x** is prime it always outputs **yes**
- if **x** is composite it outputs **yes** with probability at most **1**/4.

Probability is taken only over the internal randomness of the algorithm, so **we can iterate**!

The error goes to zero exponentially fast. This algorithm is fast and practical!

Deterministic algorithm of **Agrawal et al. (2002)** polynomial but **very inefficient in practice**

How to select a **random** prime of length *n*?

Select a random number **x** and test if it is prime.

Factoring is believed to be hard!

Factoring assumption.

Take random primes **p** and **q** of length **n**.

Set *N* = *pq*.

No polynomial-time algorithm that is given *N* can find *p* and *q* in with a **non-negligible probability**.

Factoring is a subject of very intensive research.

Currently **|***N***|=2048** is believed to be a safe choice.

So we have a one-way function!

f(p,q) = pq is **one-way**. (assuming the factoring assumption holds).

Using the theoretical results [**HILL99**] this is enough to construct secure encryption schemes.

It turns out that we can do much better:

based on the number theory we can construct **efficient schemes**, that have some **very nice additional properties** (**public key cryptography**!)

> **But how to do it?** We need to some more maths...₁₁

Notation

Suppose *a* and *b* are integers, such that $a \neq 0$

a | **b**:

- *a* divides *b*, or
- *a* is a **divisor** of *b*, or
- *a* is a factor of *b*

(if *a* ≠ 1 then *a* is a **non-trivial factor** of *b*)

gcd(a,b) = "the greatest common divisor of a and b"
lcm(a,b) = "the least common multiple of a and b"

If **gcd(***a*,*b***) = 1** then we say that *a* and *b* are **relatively prime**.

How to compute **gcd(***a*,*b***)**?

Euclidean algorithm

Recursion:

(assume $a \ge b \ge 0$)

It can be shown that

- this algorithm is **correct** (induction),
- it terminates in **polynomial number of steps**.

Example computing gcd(185,40):

a	b	a mod b
185	40	25
40	25	15
25	15	10
15	10	5
10	5	0
\leq	this is	
	the result	

Claim

Let **a** and **b** be positive integers. There always exist integers **X** and **Y** such that

Xa + Yb = gcd(a,b)

X and Y can be computed using the <u>extended</u> Euclidian algorithm.

Plan

- 1. Role of number theory in cryptography
- 2. Classical problems in computational number theory
- 3. Finite groups
- 4. Cyclic groups, discrete log
- 5. Group Z_N^* and its subgroups
- 6. Elliptic curves

Groups

A **group** is a set *G* along with a binary operation • such that:

- **[closure]** for all $g, h \in G$ we have $g \circ h \in G$,
- there exists an **identity** $e \in G$ such that for all $g \in G$ we have $e \circ g = g \circ e = g$,
- for every $g \in G$ there exists an **inverse of**, that is an element h such that

$$\boldsymbol{g}\circ\boldsymbol{h} = \boldsymbol{h}\circ\boldsymbol{g} = \boldsymbol{e},$$

- [associativity] for all $g, h, k \in G$ we have $g \circ (h \circ k) = (g \circ h) \circ k$
- [commutativity] for all $g, h \in G$ we have $g \circ h = h \circ g$

if this holds, the group is called **abelian**

Additive/multiplicative notation

[additive notation] If the groups operation is denoted with +, then: the inverse of g is denoted with -g, the neutral element is denoted with 0, g + … + g (n times) is denoted with ng.

[multiplicative notation] If the groups operation is denoted "×" or "·", then: sometimes we write gh instead of $g \cdot h$, the inverse of g is denoted g^{-1} or 1/g. the neutral element is denoted with 1, $g \cdot \cdots \cdot g$ (n times) is denoted with g^n $(g^{-1})^n$ is denoted with g^{-1} .

Subgroups

A group **G** is a **subgroup** of **H** if

- **G** is a subset of **H**,
- the group operation O is the same as in H

A cross product of groups

(G,○) and (H,□) – groups

Define a group **(G × H, •)** as follows:

- the elements of G × H are pairs (g,h), where g ∈ G and h ∈ H.
- $(g,h) \cdot (g',h') = (g \circ g', h \Box h').$

It is easy to verify that it is a group.

Examples of groups

- **R** (reals) is not a group with multiplication.
- **R \ {0}** is a group with multiplication.
- Z (integers):
 - is a group under addition (identity element: 0),
 - is not a group under multiplication.
- *Z_N* = {0,...,*N*-1} (integers modulo *N*) is a group under addition modulo *N* (identity element: 0)
- If *p* is a prime then Z^{*}_p = {1, ..., p − 1} is a group under multiplication modulo p (identity element: 1) (we will discuss it later)

 Z_N is a group under addition. Is it also a group under multiplication?

No: 0 doesn't have an inverse.

What about other elements of Z_N ?

Example *N* = 12.

Only: **1,5,7,11** have an inverse!

<u>Why?</u>

Because they are **relatively prime** to **12**.

	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11
2	0	2	4	6	8	10	0	2	4	6	8	10
3	0	3	6	9	0	3	6	9	0	3	6	9
4	0	4	8	0	4	8	0	4	8	0	4	8
5	0	5	10	3	8	1	6	11	4	9	2	7
6	0	6	0	6	0	6	0	6	0	6	0	6
7	0	7	2	9	4	11	6	1	8	3	10	5
8	0	8	4	0	8	4	0	8	4	0	8	4
9	0	9	6	3	0	9	6	3	0	9	6	3
10	0	10	8	6	4	2	0	10	8	6	4	2
11	0	11	10	9	8	7	6	5	4	3	2	1

$\frac{Observation}{If gcd(a,n)} > 1 \text{ then for every integer } b \text{ we have}$ $ab \mod n \neq 1.$

<u>Proof</u>

Suppose for the sake of contradiction that *ab* mod *n* = 1. Hence we have:

```
ab = nk + 1

\downarrow

ab - nk = 1
```

Since gcd(*a*,*n*) divides both *ab* and *nk* it also divides *ab* – *nk*.

Thus **gcd(***a*,*n***)** has to divide **1**. Contradiction.

QED

Define $Z_N^* = \{a \in Z_N : \operatorname{gcd}(a, N) = 1\}.$

Then $\mathbb{Z}_{\mathbb{N}}^{*}$ is an abelian group under multiplication modulo \mathbb{N} .

Proof

First observe that Z_N^* is **closed under multiplication** modulo *N*.

- This is because is **a** and **b** are relatively prime to **N**, then **ab** is also relatively prime to **N**.
- Associativity and commutativity are trivial.
- **1** is the identity element.

It remains to show that for every $a \in \mathbb{Z}_N^*$ there exist $b \in \mathbb{Z}_N^*$ that is an **inverse of** a modulo N.

We say that **b** is an **inverse of a** modulo **N** if: $a \cdot b = 1 \mod N$

Lemma Suppose that gcd(a,N) = 1. Then for every $a \in Z_N^*$ there always exist an element $X \in Z$ such that $X \cdot a \mod N = 1$.

Proof Since gcd(a,N) = 1 there always exist integers
X and Y such that

Xa + YN = 1.

Therefore *Xa* = 1 (mod *N*).

QED

Observation

Such an **X** can be efficiently computed (using the **extended Euclidian algorithm**).

What remains?

X (from the previous lemma) can be such that

 $X \notin Z_N^*$

then **gcd(***b*,*N***)=1**

If **b** := X mod N then **b** = X + tN So **a b** = **a** • (X + tN) = **a**X + **a**tN = **1** (mod N)

Remember that X is such that $aX \mod N = 1$.

Hence we are done!

An example

p – a prime

$\boldsymbol{Z_p^*}\coloneqq\{\boldsymbol{1},\dots,\boldsymbol{p-1}\}$

Z^{*}_p is an abelian group under multiplication modulo p.

A simple observation

For every $a, b, c \in G$. If ac = bcthen

a = *b*.

Corollary

In every group **G** and every element $\mathbf{b} \in \mathbf{G}$ the function $f: G \rightarrow G$ $f(x) = x \circ b$ is a bijection. (or, in other words, a **permutation on** *G*).

Example: Z_{11}^*

Permutations have cycles. Let's look now at the cycles that contain 1!

Example: $f(x) = 5 \cdot x \mod 11$

Example: $f(x) = 10 \cdot x \mod 11$

Example: $f(x) = 2 \cdot x \mod 11$

It has to be a cycle!

If we do it in \mathbb{Z}_n^* , where **n** is not prime...

for example: n = 153 12 1 *g* = 3 6 If *n* is a prime this **cannot happen** because $f(x) = x \cdot g \mod n$ is a **permutation** so we cannot have $f(x_1) = f(x_2)$ for $x_1 \neq x_2$

9

Order of an element

Definition

An order of g (denoted ord(g)) is the smallest integer i > 0such that $g^i = 1$.

Of course $i \leq |G|$

Look...

Let $m := |Z_{11}^*| = 10$

• the order of *g* divides the order of the group *G*.
Lemma

G – an abelian group, m := |G|, g ∈ G. Then $g^m = 1$.

Suppose $G = \{g_1, ..., g_m\}$. Observe that

from associativity and commutativity $g_1 \circ \cdots \circ g_m$ = $(g \circ g_1) \circ \cdots \circ (g \circ g_m)$ = $g^m \circ (g_1 \circ \cdots \circ g_m)$ these are
the same
elements
(permuted),
because the
function
 f(x) = g o x
is a
permutation

Hence $g^m = 1$.

Observation

G – an abelian group, $m \coloneqq |G|, g \in G, i \in \mathbb{N}$. Then $g^i = g^{i \mod m}$.

Proof

Write *i* = *qm* + *r*, where *r* = *i* mod *m*, and *q* is some integer.

We have

$$g^i = g^{qm+r} = (g^m)^q \cdot g^r = 1^q \cdot g^r = g^r$$

QED

Which orders are possible?

For Z_{11}^* : 1,2,5,10 What do the have in common?

They are the divisors of $10 = |Z_{11}^*|$

How does it look for \mathbb{Z}_7^* ?

For **Z**₇^{*}: **1,2,3,6**

They are the divisors of $6 = |Z_7^*|$

Generated subgroups

Definition

G − a group, $g \in G$, *i* − order of g $\langle g \rangle \coloneqq \{g^0, ..., g^{i-1}\}$ $\langle g \rangle$ is a **subgroup** of *G* generated by *g*.

Why?

because:

1. it is closed under multpilication

 $g^a \cdot g^b = g^{a+b \mod i}$

2. the inverse of every g^a exists, and it is equal to a^{i-a}

Because: $g^{i-a} \cdot g^a = g^i = 1$

Observe

order of an element *g*

order of the group $\langle g \rangle$

We can now use the Lagrange's Theorem

Lagrange's Theorem If **H** is a **subgroup** of **G** then

H divides G

So, that's why the order of *g* divided the order of the group *G*.

Plan

- 1. Role of number theory in cryptography
- 2. Classical problems in computational number theory
- 3. Finite groups
- 4. Cyclic groups, discrete log
- 5. Group Z_N^* and its subgroups
- 6. Elliptic curves

Cyclic groups

If there exists g such that $\langle g \rangle = G$ then we say that G is cyclic.

Such a *g* is called a generator of *G*.

1 is a generator of **Z**₁₀

3 is a generator of **Z**₁₀

2 is **<u>not</u> a generator of Z**₁₀

Observation

Every group G of a prime order is cyclic.Every element g of G, except the identity is its generator.

Proof

The order of **g** has to divide **p**.

So, the only possible orders of *g* are **1** or *p*.

Trivial: **x** has "order **1**" if $x^1 = 1$

Only identity has order **1**, so all the other elements have order **p**.

Another fact

Theorem

If **p** is prime, then Z_p^* is cyclic.

We leave it without a proof.

We verified that it is true for p=11and p=7.

Of course:

Not every element of

is its generator.

For example:

p-1

 Z_{v}^{*}

has order **2** because $(p-1)^2 = p^2 - 2p + 1 = 1 \pmod{p}$

Example of a group that is not cyclic

The maximal order is **4**...

Look...

 Z_{11}^* and Z_{10} are essentially the same group: $g^a \cdot g^b \mod 11 = g^{a+b \mod 10}$ In other words: Z_{11}^* and Z_{10} are isomorphic.

Group isomorphism

- **G** a group with operation \circ
- **H** a group with operation \Box

<u>Definition</u> A function $f: G \rightarrow H$ is a group isomorphism if 1. it is a bijection, and

2. it is a **homomorphism**, i.e.: for every $ab \in G$ we have $f(a \circ b) = f(a) \Box f(b)$.

Isomorphic groups

If there exists and isomorphism between *G* and *H*, we say that they are **isomorphic**.

Of course isomorphism is an equivalence relation.

This is an isomorphism

G – a cyclic group of order *i*g – a generator of G

Why? Because $g^a \cdot g^b = g^{a+b \mod i}$

How to compute g^x for large x?

If the multiplication is easy then we can use the "**square-and-multiply**" method **Example**

x in binary 0 1 1 1 1 1 0 1 0 compute by **g**³² **g**¹⁶ g^{256} **g**⁶⁴ **g**⁸ g^{128} squaring **g**² g^1 **g**⁴ from right to left **g**²⁵⁶ **g**³² **g**¹²⁸ **g**⁸ **g**⁴ g^1 multiply equals to **g**^x $a^{256}a^{128}a^{32}a^{8}a^{4}a^{1}$

What about the other direction?

(**g** – a generator)

It turns out the in many groups inverting $f(x) = g^x$

is hard!

The discrete logarithm

Suppose **G** is cyclic and **g** is its generator. For every element **y** there exists **x** such that

 $y = g^x$ Such a **x** will be called a **discrete logarithm** of **y**, and it is denoted as **x** := log **y**.

In many groups computing a discrete log is **believed to be hard**.

Informally speaking:

f: {0,...,|G| - 1} → G defined as $f(x) = g^x$ is believed to be a **one-way function** (in some groups).

Hardness of the discrete log

In some groups it is easy:

- in Z_n it is **easy** because $a^e = e \cdot a \mod n$
- In Z_p^* (where *p* is prime) it is believed to be hard.
- There exist also **other groups** where it is believed to be **hard** (e.g. based on the **Elliptic curves**).
- Of course: if **P** = **NP** then computing the discrete log is easy.

(in the groups where the exponentiation is easy)

How to define formally "the discrete log assumption"

It needs to be defined for *any* parameter **1**^{*n*}.

Therefore we need an algorithm **H** that

- on input **1**^{*n*}
- outputs:
 - a description of a cyclic group G of order q, such that |q| = n,
 - a generator *g* of **G**.

H on input 1ⁿ: outputs a

- random prime *p* of length *n*
- a generator of Z_p^*

The discrete log assumption

We say that a discrete logarithm problem is hard with respect to H if

 $\begin{array}{l} & \bigvee \\ P(A \text{ outputs } x \text{ such that } g^x = y) \text{ is negligible in } n \\ \text{poly-time} \\ \text{algorithm } A \end{array}$

One way function?

This looks almost the same as saying that

 $f(x) = g^x$

is a one-way function.

The only difference is that the function **f** depends on the group **G** that was chosen randomly.

We could formalize it, by defining: "one-way function <u>families</u>"

Concrete functions

For the practical applications people often use concrete groups.

In particular it is common to chose some Z_p^* for a fixed prime p.

For example the RFC3526 document specifies the primes of following lengths: **1536, 2048, 3072, 4096, 6144, 8192**.

This is the **1536**-bit prime:

the generator is: **2**.

A problem

$f: \{\mathbf{0}, \dots, p-1\} \rightarrow Z_p^*$

defined as f(x) = g^x is believed to be a one-way function (informally speaking),

but

from *f***(x)** one can compute the **<u>parity of x</u>**.

We now show how to do it.

Quadratic Residues

What is the size of **QR**_p?

Example: **QR**₁₁

A proof that $|\mathbf{QR}_p| = (p - 1) / 2$

Observation

Let g be a generator of Z_p^* .

Then
$$QR_p = \{g^2, g^4, ..., g^{p-1}\}$$
.

Proof

Every element $x \in \mathbb{Z}_p^*$ is equal to g^i for some *i*.

Hence $x^2 = g^{2i \mod (p-1)} = g^j$, where *j* is even.

Observation $a \in QR_p \text{ iff } a^{(p-1)/2} = 1 \pmod{p}$

Proof (\rightarrow) If $a \in QR_p$ then $a = g^{2i}$. Hence

 $a^{(p-1)/2}$ = $(g^{2i})^{(p-1)/2}$ = $g^{i(p-1)} = 1.$ Yes!

 $a \in QR_p \text{ iff } a(p-1)/2 = 1 \pmod{p}$

(←) Suppose *a* is **not a quadratic residue**. Then $a = g^{2i+1}$. Hence $a^{(p-1)/2}$ $= (g^{2i+1})^{(p-1)/2}$ $= g^{i(p-1)} \cdot g^{(p-1)/2}$ $= g^{(p-1)/2}$

which cannot be equal to **1** since *g* is a generator.

Hence we get a problem:

g – a generator of Z_p^*

f: {0,...,*p* - 1} → Z_p^* defined as *f*(*x*) = *g*^{*x*} is a one-way function, but

from f(x) one can compute the parity of x(by checking if $f(x) \in QR$)...

For some applications this is not good.

(but sometimes people don't care)

What to do?

Instead of working in \mathbb{Z}_p^* work in its subgroup: \mathbb{QR}_p

How to find a generator of QR_p ? Choose *p* that is a **strong prime**, that is: p = 2q + 1, with *q* prime.

Hence QR_p has a prime order (q).

Every element (except of 1) of a group of a prime order is its generator!
Therefore: every element of QR_p is a generator. Nice...

Example

11 is a strong prime (because **5** is a prime)

How to compute square roots modulo a prime *p*?

Yes!

We show it only for *p* = 3 (mod 4) (for *p* = 1 (mod 4) this fact also holds, but the algorithm and the proof are more complicated).

How to compute square root of **x** in reals?

One method: compute $x^{\frac{1}{2}}$

Problem " $\frac{1}{2}$ " doesn't make sense in \mathbb{Z}_n^* ...

Plan

- 1. Role of number theory in cryptography
- 2. Classical problems in computational number theory
- 3. Finite groups
- 4. Cyclic groups, discrete log
- 5. Group Z_N^* and its subgroups
- 6. Elliptic curves

Chinese Remainder Theorem (CRT)

Let N = pq, where p and q are two **distinct** primes. Define: $f(x) := (x \mod p, x \mod q)$

Chinese Remainder Theorem (CRT):

f is an isomorphism between

- **1.** Z_N and $Z_p \times Z_q$
- *2.* Z_N^* and $Z_p^* \times Z_q^*$

To prove it we need to show that

- **f** is a **homorphism** .
 - between Z_N and $Z_p \times Z_q$, and
 - between Z_N^* and $Z_p^* \times Z_q^*$.
- **f** is a **bijection**:
 - between Z_N and $Z_p \times Z_q$ and
 - between Z_N^* and $Z_p^* \times Z_q^*$.

 $f: Z_N \to Z_p \times Z_q$ is a homomorphism **Proof**: *f*(*a* + *b*) $(a + b \mod p, a + b \mod q)$ н $(((a \mod p) + (b \mod p)) \mod p, ((a \mod q) + (b \mod q)) \mod q)$ П $(a \mod p, a \mod q) + (b \mod p, b \mod q)$ Ш f(a) + f(b)

$$f: Z_N^* \to Z_p^* \times Z_q^* \text{ is a homomorphism}$$
Proof:

$$f(a \cdot b)$$

$$(a \cdot b \mod p, a \cdot b \mod q)$$

$$((a \mod p) \cdot (b \mod p)) \mod p, ((a \mod q) \cdot (b \mod q)) \mod q)$$

$$((a \mod p, a \mod q) \cdot (b \mod p, b \mod q))$$

$$(a \mod p, a \mod q) \cdot (b \mod p, b \mod q)$$

An example

By the way: it's not always like this!

Consider *p* = **4** and *q* = **6**:

If *p* and *q* are distinct primes then $f: Z_N \to Z_p \times Z_q$ is a bijection

$$f: \mathbb{Z}_N^* \to \mathbb{Z}_p^* \times \mathbb{Z}_q^*$$
 is also a bijection

Since we have shown that **f** is injective it is enough to show that

N = pq

Which elements of Z_N are not in Z_N^* ?

- 0
- multiples of **p**: $\{p,...,(q-1)p\}$ (there are *q***-1** of them)
- multiples of *q*: {q,...,(p-1)q} (there are *p*-1 of them).

These sets are disjoint since **p** and

• Summing it up: = pq - p - q + 11 + (q - 1) + (p - 1) = q + p - 1= (p - 1)(q - 1)

q are

distinct

primes

So Z_N^* has pq - (q + p - 1) elements.

How does it look for large **p** and **q**?

pq is called **RSA modulus** Z_N^* is called an **RSA group**

technical assumption: $p \neq q$

we will often forget to mention it (since for large *p* and *q* the probability that this *p* = *q* is negligible)

Fact

$(f(x) := (x \bmod p, x \bmod q))$

f¹ is also easy to compute (this is also a simple fact)

The inverse of *f*(*x*) := (*x* mod *p*, *x* mod *q*)

Let

```
c_1 \coloneqq (q \bmod p)^{-1} \bmod p
```

```
c_2 \coloneqq (p \bmod q)^{-1} \bmod q
```

Then

 $g(y_1,y_2) \coloneqq (q c_1 y_1 + p c_2 y_2) \bmod pq$

is the inverse of *f*.

(exercise)

By the way

Remember that we observed that Z_{15}^* is not cyclic?

Now we know why: $a^x \mod pq = 1$ iff $a^x \mod p = 1$ and $a^x \mod q = 1$ iff x | p - 1 and x | q - 1 iff x | lcm(p-1,q-1) for p=3 and q=5 it is equal to: lcm(2,4) = 4

More general version of CRT

p_1, \dots, p_n – such that for every *i* and *j* we have $gcd(p_i, p_j)$

Define

$f(x) \coloneqq (x \bmod p_1, ..., x \bmod p_n)$

Let $M = p_1 \cdots p_n$. Then foollowing f is an isomorphism $f: Z_M \to Z_{p_1} \times \cdots \times Z_{p_n}$ and $f: Z_M^* \to Z_{p_1}^* \times \cdots \times Z_{p_n}^*$

Moreover f and f^1 can be computed efficiently.

Euler's ϕ function

Define $\varphi(N) = |Z_N^*| = |\{a \in Z_N : gcd(a,N) = 1\}|.$

Euler's theorem: For every $a \in Z_N^*$ we have $a^{\varphi(N)} = 1 \mod N$. (trivially follows from the fact that for every $g \in G$ we have $g^{|G|} = 1$).

Special case ("Fermat's little theorem") For every prime p and every $a \in \{1, ..., p - 1\}$ we have $a^{p-1} = 1 \mod N$.

How to compute $\varphi(N)$, where N = pq?

Of course if p and q are known then it is easy to compute $\varphi(N)$, since $\varphi(N) = (p-1)(q-1)$.

Hence, computing $\phi(N)$ cannot be harder than factoring.

Fact Computing **φ**(*N*) is as hard as factoring *N*.

Computing $\phi(N)$ is as hard as factoring N.

Suppose we can compute $\varphi(N)$. We know that

$$\begin{cases} (p-1)(q-1) = \varphi(N) & (1) \\ pq = N & (2) \end{cases}$$

It is a system of **2** equations with **2** unknowns (**p** and **q**). We can solve it:

Which problems are easy and which are hard in Z_N^* (N = pq)?

multiplying elements?

easy!

- finding inverse?
 - easy! (Euclidean algorithm)
- computing $\varphi(N)$?

hard! - as hard as factoring **N**

 raising an element to power e (for a large e)?

computing eth root (for a large e)?

Computing *e*th roots modulo *N*

In other words, we want to invert a function:

 $f: Z_N^* \to Z_N^*$ defined as $f(x) = x^e \mod N.$ This is possible only if *f* is a permutation.

<u>Lemma</u>

f is a permutation if and only if $gcd(e, \phi(N)) = 1$.

In other words: $e \in \mathbb{Z}_{\phi(N)}^*$ (note: a "new" group!)

" $f(x) = x^e \mod N$ is a permutation if and only if $gcd(e, \varphi(N)) = 1$."

2.
$$gcd(e, \phi(N)) = 1$$

$$f(x) = x^e \mod N$$
is a permutation

[exercise]

Computing *e*th root – easy, or hard?

```
Suppose gcd(e, φ(N)) = 1
```

```
We have shown that the function

f(x) = x^e \mod N (defined over Z_N^*)

has an inverse

f^1(x) = x^d \mod N, where d is an inverse of e in Z_{\omega(N)}^*
```

Moral:

If we know $\phi(N)$ we can compute the roots efficiently.

What if we don't know $\phi(N)$?

Can we compute the eth root if we do not know $\varphi(N)$?

It is conjectured to be hard.

This conjecture is called an **RSA assumption**. More precisely:

RSA assumption

For any randomized polynomial time algorithm **A** we have:

$P(y^e = x \mod N : y := A(x,N,e))$ is negligible

where N = pq where p and q are random primes such that |p| = |q|, and x is a random element of Z_N^* , and e is random element of $Z_{\phi(N)}^*$

What can be shown?

Does the **RSA assumption** follow from the assumption that factoring is hard? We don't know...

What **can** be shown is that

computing *d* from *e* is not easier than factoring *N*.

Functions like this are called **trap-door one-way permutations**.

f is called an **RSA function** and is extremely important.

Outlook

N – a product of two large primes

Square roots modulo *N=pq*

So, far we discussed a problem of computing the *e*th root modulo *N*.

What about the case when *e* = 2?

Clearly $gcd(2,\phi(N)) \neq 1$, so $f(x) = x^2$ is not a bijection.

Question Which elements have a square root modulo *N*?

Quadratic Residues modulo pq

Z^{*}₁₅:

<u>Observation</u>: every quadratic residue modulo **15** has **exactly 4** square roots, and hence $|QR_{15}| = |Z_{15}^*| / 4$.

A lemma about QRs modulo **pq**

<u>Fact</u>: For N = pq we have $|\mathbf{QR}_N| = |\mathbf{Z}_N^*| / 4$.

QRs modulo **pq** – an example

Every $x \in QR_N$ has exactly 4 square roots

More precisely, every $z = x^2$ has the square roots x_{++} and x_{+-} , x_{-+} , x_{--} such that:

Jacobi Symbol

for any prime p define $J_p(x) := \begin{cases} +1 & \text{if } x \in QR_p \\ -1 & \text{otherwise} \end{cases}$

for N=pq define $J_N(x) := J_p(x) \cdot J_q(x)$

Jacobi symbol can be computed efficiently! (even in *p* and *q* are unknown)

Algorithmic questions about QR

Suppose *N=pq*

Is it easy to test membership in QR_N ?

<u>Fact</u>: if one knows *p* and *q* – yes!

Because:

testing membership modulo a prime is easy
 the "CRT function"

 $f(x) := (x \bmod p, x \bmod q)$

can be efficiently computed in both directions

What if one doesn't know **p** and **q**?

Quadratic Residuosity Assumption

So, how to compute a square root of $x \in QR_N$?

<u>Fact</u>

Let **N** be a random **RSA** modulus.

The problem of computing square roots (modulo N) of random elements in QR_N is poly-time equivalent to the problem of factoring N.

Proof

We need to show that:

This follows from the fact that computing square roots modulo a prime *p* is easy.

f(x) = (x mod p, x mod q) – the "CRT function"

Suppose we have an algorithm *B* that computes the square roots.

We construct an algorithm **A** that factors **N**.

N

A

3. if *y* = *x* or *y* = -*x* (mod *N*) then **go to 1**

To complete the proof we show that:

1. the probability that y = x or y = -x is equal to 1/2,

2. If $y \neq x$ and $y \neq -x$ then gcd(N, x - y) > 1. "the probability π that y = x or y = -xis equal to 1/2"

Recall that every $z = x^2$ has the square roots x_{++} and x_{+-} , x_{-+} , x_{--} such that:

- $x_{++} = x \pmod{p}$ and $x_{++} = x \pmod{q}$ equals to x
- $x_{+-} = x \pmod{p}$ and $x_{+-} = -x \pmod{q}$
- $x_{-+} = -x \pmod{p}$ and $x_{-+} = x \pmod{q}$
- $x_{-} = -x \pmod{p}$ and $x_{-} = -x \pmod{q}$ equals to -x

If we are unlucky it always happens that:

Or:

Observation

"Suppose that $y \neq x$ and $y \neq -x$. Then gcd(N, x - y) > 1"

We know that **y** is such that

y = x (mod p) and y = -x (mod q)
 (the other case is symmetric)
Hence y ≠ x mod N, and therefore y - x ≠ 0 mod N.
On the other hand:

 $y - x = 0 \mod p$

Therefore

gcd(N, y - x) = p.

Outlook

Groups that we have seen:

subgroups: QR_p and QR_N

Other interesting groups

- multiplicative groups of a field GF(2^p),
- groups based on the elliptic curves

advantage: much smaller key size in practive

we will now talk about it now

Plan

- 1. Role of number theory in cryptography
- 2. Classical problems in computational number theory
- 3. Finite groups
- 4. Cyclic groups, discrete log
- 5. Group Z_N^* and its subgroups
- 6. Elliptic curves

Elliptic curves over the reals

Let $a, b \in \mathbb{R}$ be two numbers such that $4a^3 + 27b^2 \neq 0$

A non-singular elliptic curve is a set \mathbf{E} of solutions $(x,y) \in \mathbb{R}^2$ to the equation

 $y^2 = x^3 + ax + b$

together with a special point **O** called the **point in infinity**.

Example $y^2 = 4x^3 - 4x + 4$

An abelian group over an elliptic curve

- **E** elliptic curve
- (E,+) a group
- neutral element: 🕐

inverse of P = (x,y): P = (x,-y)

"Addition"

Suppose $P,Q \in E \setminus \{O\}$ where $P=(x_1,y_1)$ and $Q=(x_2,y_2)$. Consider the following cases:

1. $x_1 \neq x_2$ 2. $x_1 = x_2$ and $y_1 = -y_2$ 3. $x_1 = x_2$ and $y_1 = y_2$

Case 1: **x**₁≠**x**₂

Fact *L* intersects **E** in exactly one point $R = (x_3, y_3)$.

where:

$$x_{3} = \lambda^{2} - x_{1} - x_{2}$$

$$y_{3} = \lambda(x_{1} - x_{3}) - y_{1}$$

and

 $\lambda = (y_2 - y_1) / (x_2 - x_1)$

Case 2: $x_1 = x_2$ and $y_1 = -y_2$

 $P + Q = \mathcal{O}$

 $P=(x_1,y_1)$ and $Q=(x_2,y_2)$

Case 3: $x_1 = x_2$ and $y_1 = y_2$

 $P=(x_1,y_1) \text{ and } Q=(x_2,y_2)$

L – line tangent to **E** at point **R**

Fact *L* intersects **E** in exactly one point $R = (x_3, y_3).$

where:

$$x_{3} = \lambda^{2} - x_{1} - x_{2}$$

$$y_{3} = \lambda(x_{1} - x_{3}) - y_{1}$$

and

 $\lambda = (3x_1^2y_2 + a)/(2y_1)$

How to prove that this is a group?

Easy to see:

- addition is closed on the set E
- addition is commutative
- 🕐 is an identity
- every point has an inverse

What remains is **associativity (exercise)**.

How to use these groups in cryptography?

Instead of the reals use some finite field.

For example Z_p , where **p** is prime.

All the formulas remain the same!

Example

X	<i>x</i> ³ + <i>x</i> + 6 mod 11	quadratic residue?	У
0	6	no	
1	8	no	
2	5	yes	4,7
3	3	yes	5,6
4	8	no	
5	4	yes	2,9
6	8	no	
7	4	yes	2,9
8	9	yes	3,8
9	7	no	
10	4	yes	2,9

Hasse's Theorem

Let **E** be an elliptic curve defined over Z_p where p > 3 is prime.

$p+1-2\sqrt{p} \le |E| \le p+1+2\sqrt{p}$

How to use the elliptic curves in cryptography? (E,+) - elliptic curve

Sometimes (E,+) is cyclic or it contains a large cyclic subgroup (E',+).

There are examples of such (E,+) or (E',+) where the **discrete-log problem** is believed to be computationally hard!

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.