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Number theory in cryptography - advantages

1. security can (in principle) be based on famous 
mathematical conjectures,

2. the constructions have a “mathematical structure”,
this allows us to create more advanced constructions 
(public key encryption, digital signature 
schemes, and many others...).

3. the constructions have a natural security parameter
(hence they can be “scaled”).

Additional advantage
a practical application of an area that was never believed to 
be practical... (a wonderful argument for all theoreticians!)
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Number theory in cryptography -
disadvantages

1. cryptography based on number theory is 
much less efficient!

2. the number-theoretic “structure” may help 
the cryptoanalyst...
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Number theory as a source of hard 
problems

In this lecture we will look at some basic 
number-theoretic problems,

identifying those that may be useful in 
cryptography.
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Famous algorithmic problems in number 
theory

factoring:

input: 𝒂 ∈ 𝐍

output: factors of a

primality testing:
input: 𝒂 ∈ 𝐍
output:
• yes if a is a prime,
• no otherwise

this problem is 
computationally easy

this problem is believed to be 
computationally hard if a is a 
product of two long random 

primes p and q, of equal length.
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Deterministic algorithm of Agrawal et al. (2002)
polynomial but very inefficient in practice

Miller-Rabin test (late 1970s) is probabilistic:
• if x is prime it always outputs yes
• if x is composite it outputs yes with probability at most ¼.

Probability is taken only over the internal randomness of the algorithm, 
so we can iterate!

The error goes to zero exponentially fast.
This algorithm is fast and practical!

Primality testing
x – the number that we want to test

Sieve of Eratosthenes (ca. 240 BC): 
takes  𝒙 steps, which is exponential in |x| = log2 x
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Prime Number Theorem
Let 

π(x) := number of n’s such that 
n  {1,...,x}  and n is prime

Then

How to select a random prime of length n?

Select a random number x and test if it is prime.

Hence, the set of primes is “dense”.

For example if x = 21000 then
(x)/x  0.0014

𝜋 𝑥 ≈
𝑥

ln 𝑥

𝐥𝐢𝐦
𝒙→∞

𝝅(𝒙)

𝒙/𝐥𝐧(𝒙)
= 𝟏
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Factoring is believed to be hard!

Factoring assumption.

Take random primes p and q of length n.

Set N = pq.

No polynomial-time algorithm that is given N can find 
p and q in with a non-negligible probability.

Factoring is a subject of very intensive 
research.

Currently |N|=2048 is believed to be a safe 
choice.
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So we have a one-way function!

Using the theoretical results [HILL99] this is enough to 
construct secure encryption schemes.

It turns out that we can do much better:

f(p,q) = pq is one-way.
(assuming the factoring assumption holds).

based on the number theory we can construct 
efficient schemes,

that have some very nice additional properties
(public key cryptography!)

But how to do it?
We need to some more maths...
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Notation
Suppose a and b are integers, such that a ≠ 0

a | b:

• a divides b, or
• a is a divisor of b, or
• a is a factor of b

(if a ≠ 1 then a is a non-trivial factor of b)

gcd(a,b) = “the greatest common divisor of a and b”

If gcd(a,b) = 1 then we say that
a and b are relatively prime.

lcm(a,b) = “the least common multiple of a and b”
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How to compute gcd(a,b)?

Euclidean algorithm
Recursion:
(assume a ≥ b ≥ 0)

gcd(a,b) = if b | a
then return b

else return gcd(b, a mod b)

It can be shown that 
• this algorithm is correct (induction),
• it terminates in polynomial number of steps.



Example
computing gcd(185,40):

a b a mod b

185 40 25

40 25 15

25 15 10

15 10 5

10 5 0

this is
the 

result
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Claim

Let a and b be positive integers.  

There always exist integers X and Y such that

Xa + Yb = gcd (a,b)

X and Y can be computed using the extended
Euclidian algorithm.
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• [closure] for all 𝒈, 𝒉 ∈ 𝑮 we have 𝒈 ∘ 𝒉 ∈ 𝑮,

• there exists an identity 𝒆 ∈ 𝑮 such that for all 𝒈 ∈ 𝑮 we have
𝒆 ∘ 𝒈 = 𝒈 ∘ 𝒆 = 𝒈,

• for every 𝒈 ∈ 𝑮 there exists an inverse of, that is an element 𝒉 such 
that

𝒈 ∘ 𝒉 = 𝒉 ∘ 𝒈 = 𝒆,

• [associativity] for all 𝒈, 𝒉, 𝒌 ∈ 𝑮 we have
𝒈 ∘ (𝒉 ∘ 𝒌) = (𝒈 ∘ 𝒉) ∘ 𝒌

• [commutativity] for all 𝒈, 𝒉 ∈ 𝑮 we have
𝒈 ∘ 𝒉 = 𝒉 ∘ 𝒈

Groups
A group is a set 𝑮 along with a binary operation ∘ such that:

if this holds, the group is called abelian
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[additive notation]
If the groups operation is denoted with +, then:

the inverse of 𝒈 is denoted with −𝒈,
the neutral element is denoted with 𝟎,
𝒈 +⋯ + 𝒈 (𝒏 times) is denoted with 𝒏𝒈.

[multiplicative notation]
If the groups operation is denoted “×” or “⋅”, then:

sometimes we write 𝒈𝒉 instead of 𝒈 ⋅ 𝒉,
the inverse of 𝒈 is denoted 𝒈−𝟏 or 𝟏/𝒈.
the neutral element is denoted with 𝟏,
𝒈 ⋅ ⋯ ⋅ 𝒈 (𝒏 times) is denoted with 𝒈𝒏

𝒈−𝟏 𝒏 is denoted with 𝒈−𝟏.

Additive/multiplicative notation
Convention:
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Subgroups

A group G is a subgroup of H if

• G is a subset of H,

• the group operation ○ is the same as in H
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A cross product of groups

(G,○) and (H,□) – groups 

Define a group (G × H, •) as follows:

• the elements of G × H are pairs (g,h), 
where 𝒈 ∈ 𝑮 and 𝒉 ∈ 𝑯.

• (g,h) • (g’,h’) = (g ○ g’, h □ h’).

It is easy to verify that it is a group.
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Examples of groups

• R (reals) is not a group with multiplication.

• R \ {0} is a group with multiplication.

• Z (integers):
– is a group under addition (identity element: 0),

– is not a group under multiplication.

• ZN = {0,...,N-1} (integers modulo N) is a group under 
addition modulo N (identity element: 0)

• If p is a prime then 𝒁𝒑
∗ = {𝟏,… , 𝒑 − 𝟏} is a group under 

multiplication modulo p (identity element: 1)
(we will discuss it later)
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ZN is a group under addition.   Is it also a group under
multiplication?

No: 0 doesn’t have an inverse.

What about other elements of ZN? 

Example N = 12.
0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 10 11

2 0 2 4 6 8 10 0 2 4 6 8 10

3 0 3 6 9 0 3 6 9 0 3 6 9

4 0 4 8 0 4 8 0 4 8 0 4 8

5 0 5 10 3 8 1 6 11 4 9 2 7

6 0 6 0 6 0 6 0 6 0 6 0 6

7 0 7 2 9 4 11 6 1 8 3 10 5

8 0 8 4 0 8 4 0 8 4 0 8 4

9 0 9 6 3 0 9 6 3 0 9 6 3

10 0 10 8 6 4 2 0 10 8 6 4 2

11 0 11 10 9 8 7 6 5 4 3 2 1

Only: 1,5,7,11
have an inverse!

Why?

Because they 
are relatively 
prime to 12.
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Observation

If gcd(a,n) > 1 then for every integer b we have

ab mod n ≠ 1.

Proof

Suppose for the sake of contradiction that ab mod n = 1.

Hence we have:

ab = nk + 1

↓

ab - nk = 1

Since gcd(a,n) divides both ab and nk it also divides ab – nk.

Thus gcd(a,n) has to divide 1.  Contradiction.  

QED
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𝒁𝑵
∗

Define 𝒁𝑵
∗ = {𝒂 ∈ 𝒁𝑵: 𝐠𝐜𝐝 𝒂,𝑵 = 𝟏}.

Then 𝒁𝑵
∗ is an abelian group under multiplication modulo N.

Proof

First observe that 𝒁𝑵
∗ is closed under multiplication modulo N.

This is because is a and b are relatively prime to N, then ab is also 
relatively prime to N.

Associativity and commutativity are trivial.

1 is the identity element.

It remains to show that for every 𝒂 ∈ 𝒁𝑵
∗ there exist 𝒃 ∈ 𝒁𝑵

∗ that is 
an inverse of a modulo N. 

We say that b is an inverse of a modulo N if:
a · b = 1 mod N
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Proof Since gcd(a,N) = 1 there always exist integers 
X and Y such that

Xa + YN = 1.

Therefore Xa = 1 (mod N).
QED

Lemma 
Suppose that gcd(a,N) = 1.  Then for every 𝒂 ∈ 𝒁𝑵

∗

there always exist an element 𝑿 ∈ 𝒁 such that
X · a mod N = 1.

Observation
Such an X can be efficiently computed (using the extended 
Euclidian algorithm).



What remains?

X (from the previous lemma) can be such 
that 

X  𝒁𝑵
∗

What to do?

define b := X mod N

we need to show that

a · b = 1 mod N

This will imply that
b  𝒁𝑵

∗

because if 
a · b = 1 mod N

then gcd(b,N)=1



If
b := X mod N
then b = X + tN
So 
a b = a · (X + tN)

= aX + atN
= 1 (mod N)

Hence we are done!

Remember that X is such that

aX mod N = 1.
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An example

p – a prime

𝒁𝒑
∗ ≔ {𝟏,… , 𝒑 − 𝟏}

𝒁𝒑
∗ is an abelian group under 
multiplication modulo p.
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A simple observation

For every 𝒂, 𝒃, 𝒄 ∈ 𝑮.  If 
ac = bc

then 
a = b.



Corollary

In every group G and every element 𝒃 ∈ 𝑮 the function
f : G → G

f(x) = x ○ b
is a bijection.
(or, in other words, a permutation on G).

x 1 2 3 4 5 6 7 8 9 10

f(x) 5 10 4 9 3 8 2 7 1 6
f(x) = 5·x mod 11

Example: 𝒁𝟏𝟏
∗

Permutations have cycles. 
Let’s look now at the cycles that contain 1!



1
2

3

4

5
6

7

8

9

10

Example:  f(x) = 5·x mod 11

1

5

34

9

1 · 5 = 5 (mod 11)

5 · 5 = 25 = 3 (mod 11)

3 · 5 = 15 = 4 (mod 11)

4 · 5 = 20 = 9 (mod 11)

9 · 5 = 45 = 1 (mod 11)



1
2

3

4

5
6

7

8

9

10

Example:  f(x) = 10·x mod 11

1 10



1
2

3

4

5
6

7

8

9

10

Example:  f(x) = 2·x mod 11

1
2

4

8

5
10

9

7

3

6



It has to be a cycle!

9

12

6
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If we do it in 𝒁𝒏
∗ , where n is not prime...

If n is a prime this cannot happen because
f(x) = x · g mod n
is a permutation
so we cannot have

f(x1) = f(x2)
for x1 ≠ x2

for example:
n = 15
g = 3



Order of an element

Definition

An order of g (denoted 𝐨𝐫𝐝(𝒈)) is the smallest integer i > 0

such that gi = 1.

Of course i ≤ |G|

1
2

4

8

5
10

9

7

3

6
1

10

1

10

1
10

1

10

1

10
1

5

3

4

9
1

5

3

4

9

g = 5
order: 5

g = 10
order: 2

g = 2
order: 10



Look...

Let m := |𝒁𝟏𝟏
∗ | = 10

1
2

4

8

5
10

9

7

3

6
1

10

1

10

1
10

1

10

1

10
1

5

3

4

9
1

5

3

4

9

Observe: in these examples 
• gm = 1
• the order of g divides the order of the group G. 

g = 5 g = 10 g = 2

we will now show that it’s not
a coincidence
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Lemma

G – an abelian group, m := |G|, g ∈ G.

Then gm = 1.

Proof

Suppose G = {g1,...,gm}.

Observe that

g1○ . . . ○ gm

= (g○g1)○ . . . ○ (g○gm)

= gm ○ (g1○ . . . ○ gm)

Hence gm = 1.

these are 
the same
elements 
(permuted),
because the 
function

f(x) = g ○ x
is a 
permutation

from associativity
and commutativity
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Observation

G – an abelian group, 𝒎≔ 𝑮 ,𝒈 ∈ 𝑮, 𝒊 ∈ 𝐍.
Then gi = gi mod m.

Proof
Write i = qm + r, where r = i mod m, and q is 

some integer.
We have

gi = g qm + r = (gm)q · gr = 1q · gr = gr

QED



Which orders are possible?

1 10

1

5

34

9 g = 5
order: 5

g = 10
order: 2

1

g = 1
order: 1

1
2

4

8

5
10

9

7

3

6

g = 2
order: 10

For 𝒁𝟏𝟏
∗ :

1,2,5,10
What do the 
have in 
common?

They are the 
divisors of

10 = |𝒁𝟏𝟏
∗ |



How does it look for 𝒁𝟕
∗?

1

24

1

3

2

6

4

5

1

g = 2
order: 3

g = 1
order: 1

g = 3
order: 6

1 6

g = 6
order: 2

For 𝒁𝟕
∗ :

1,2,3,6

They are the 
divisors of

6 = |𝒁𝟕
∗ |



Generated subgroups

Definition
G – a group, 𝒈 ∈ 𝑮, 𝒊 – order of g

𝒈 ≔ 𝒈𝟎, … , 𝒈𝒊−𝟏

𝒈 is a subgroup of G generated by g.

g0

g1

g2

g3

g4g5

g6

gi-1

Why?
because:
1. it is closed under 

multpilication
ga · gb = ga+b mod i

2. the inverse of every ga exists, 
and it is equal to

gi-a

Because:  gi-a · ga = gi = 1



Observe

order of an element g

= 

order of the group 𝒈



We can now use the Lagrange's 
Theorem

Lagrange's Theorem

If H is a subgroup of G then 

|H| divides |G|

So, that’s why the order of g divided the order of the 
group G.
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If there exists g such that 𝒈 = 𝑮 then 
we say that G is cyclic.

Such a g is called a generator of G.

Cyclic groups



Example

1 is a generator of Z10

0
1

2

3

4
5

6

7

8

9



Example

3 is a generator of Z10

0
3

6

9

2
5

8

1

4

7



Example

2 is not a generator of Z10

0
2

4

6

8
0

2

4

6

8
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Observation

Every group G of a prime order is cyclic.

Every element g of G, except the identity is its 
generator.

Proof

The order of g has to divide p.

So, the only possible orders of g are 1 or p.

Only identity has order 1, so all the other 
elements have order p.

Trivial: x has “order 1” if x1 = 1
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Another fact

Theorem

If p is prime, then 𝒁𝒑
∗ is cyclic.

We leave it without a proof.

1

3

2

6

4

5
𝒁𝟕
∗

generator
g = 3

1
2

4

8

5
10

9

7

3

6

𝒁𝟏𝟏
∗

generator
g = 2

We verified that it
is true for p=11
and p=7.



Of course:

Not every element of

𝒁𝒑
∗

is its generator.

For example:

p-1

has order 2 because
𝒑 − 𝟏 𝟐 = 𝒑𝟐 − 𝟐𝒑 + 𝟏 = 𝟏 (𝐦𝐨𝐝 𝒑)



Example of a group that is not cyclic

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

𝒁𝟏𝟓
∗ :

a

1 4

8

1

1 4

13

1

4

2

1

1 4

7

1

1

The maximal order is 4...



Look...

𝒁𝟏𝟏
∗ and Z10 are essentially the same group:

ga · gb mod 11 = ga+b mod 10

In other words: 𝒁𝟏𝟏
∗ and Z10 are isomorphic.

1
2

4

8

5
10

9

7

3

6
0

1

2

3

4
5

6

7

8

9

8 · 10 = 3 3 + 5 = 8
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G – a group with operation ○
H – a group with operation □

Definition A function f: G → H is a group isomorphism if
1. it is a bijection, and
2. it is a homomorphism, i.e.: for every 𝒂𝒃 ∈ 𝐆 we have

f(a ○ b) = f(a) □ f(b).

Group isomorphism

(a,b) a ○ b

(f(a), f(b))

f(a ○ b) 

f(a) □ f(b)

these should be equal

□

f

f

○



Isomorphic groups

If there exists and isomorphism 
between G and H, we say that they 
are isomorphic.

Of course isomorphism is an 
equivalence relation.



This is an isomorphism

g0

g1

g2

g3

g4g5

g6

gi-1
0

1

2

3

45

6

i-1

G

G – a cyclic group of order i
g – a generator of G

𝒇: 𝒁𝒊 → 𝑮
f(x) = gx

f

Why?  Because ga · gb = ga+b mod i
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How to compute gx for large x?
If the multiplication is easy then we can use the “square-and-multiply” 

method
Example

1 1 0 1 0 1 1 0 1

g256 g128 g32 g8 g4 g1

x in binary

compute by
squaring
from right 
to left

g256 g128 g32 g8 g4 g1 multiply equals to gx

g1g2g4g8g16g32g64g128g256



What about the other direction?

(g – a generator)

It turns out the in many groups inverting

f(x) = gx

is hard!
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The discrete logarithm

Suppose G is cyclic and g is its generator.
For every element y there exists x such that

y = gx

Such a x will be called a discrete logarithm of y, and 
it is denoted as x := log y.

In many groups computing a discrete log is 
believed to be hard.

Informally speaking:

f: {0,...,|G| - 1} → G defined as f(x) = gx is believed to 
be a one-way function (in some groups).
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Hardness of the discrete log

In some groups it is easy:

• in Zn it is easy because ae = e · a mod n

• In 𝒁𝒑
∗ (where p is prime) it is believed to be hard.

• There exist also other groups where it is believed 
to be hard (e.g. based on the Elliptic curves).

• Of course: if P = NP then computing the discrete 
log is easy.

(in the groups where the exponentiation is easy)



How to define formally “the discrete log 
assumption”

It needs to be defined for any parameter 1n.

Therefore we need an algorithm H that 

• on input 1n

• outputs:

– a description of a cyclic group G of order q, such 
that |q| = n,

– a generator g of G.



Example

H on input 1n:

outputs a 

• random prime p of length n

• a generator of 𝒁𝒑
∗



The discrete log assumption

For every algorithm A consider the 
following experiment:

Let (G,g) be the output of 
H(1n).

Select random y ← G.algorithm A

(G,g,y)

We say that a discrete logarithm problem is hard with respect to H if

output:
x

∀
poly-time 

algorithm A

P(A outputs x such that gx = y) is negligible in n

1n



One way function?

This looks almost the same as saying that

f(x) = gx

is a one-way function.

The only difference is that the function f depends 
on the group G that was chosen randomly.

We could formalize it, by defining:

“one-way function families”



This is the 1536-bit prime:

FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08 

8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B 

302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9 

A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 

49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 

FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D 

670C354E 4ABC9804 F1746C08 CA237327 FFFFFFFF FFFFFFFF.

the generator is: 2.

Concrete functions
For the practical applications people often use concrete groups.

In particular it is common to chose some 𝒁𝒑
∗ for a fixed prime p.

For example the RFC3526 document specifies the primes of following lengths: 

1536, 2048, 3072, 4096, 6144, 8192.
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A problem

𝒇: 𝟎,… , 𝒑 − 𝟏 → 𝒁𝒑
∗

defined as f(x) = gx is believed to be a one-way 
function (informally speaking),

but

from f(x) one can compute the parity of x.

We now show how to do it.
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What is the size of QRp? 

Quadratic Residues
Definition
a is a quadratic residue modulo p if there exists 

b such that
a = b2 mod p

QRp – a set of quadratic 
residues modulo p

QRp is a subgroup of 𝒁𝒑
∗

QNRp := 𝒁𝒑
∗ \ QRp

Why?

because:
• 𝟏 ∈ 𝐐𝐑
• if 𝒂, 𝒂′ ∈ 𝐐𝐑

then 𝒂𝒂′ ∈ 𝐐𝐑
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Example: QR11

1

2

3

8

9

10

1

Lemma. |QRp|  =  |𝒁𝒑
∗ | / 2  =  (p - 1) / 2

𝒁𝒑
∗ :

QR11:

9 4

f(x) = x2

4

7

5

6
53

Observe:
(p – x)2 = p2 - 2px + x2

= x2 mod p
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A proof that |QRp| = (p - 1) / 2

Proof
Every element 𝒙 ∈ 𝒁𝒑

∗ is equal to gi for some i.

Hence x2 = g2i mod (p-1)  = gj, where j is even.

Observation

Let g be a generator of 𝒁𝒑
∗ .

Then QRp ={g2,g4,...,gp-1} .



Example: QR11 = {1,4,5,9,3}

1
2

4

8

5
10

9

7

3

6

		

  

5 = 4,7

		

  

1 =1,10

		

  

4 = 2,9

		

  

9 = 3,8

		

  

3 = 5,6
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Is it easy to test if 𝒂 ∈ 𝐐𝐑𝒑?
Yes!

Observation
𝒂 ∈ 𝐐𝐑𝒑iff a(p-1)/2 = 1 (mod p)

Proof
(→)
If 𝒂 ∈ 𝐐𝐑𝒑 then a = g2i.

Hence 
a(p-1)/2 

= 

(g2i)(p-1)/2

= 
gi(p-1) = 1.
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(←)

Suppose a is not a quadratic residue.

Then a = g2i+1.  Hence 

a(p-1)/2 

= (g2i+1)(p-1)/2

= gi(p-1) · g(p-1)/2

= g(p-1)/2

which cannot be equal to 1 since g is a generator.

QED

𝒂 ∈ 𝐐𝐑𝒑 iff a(p-1)/2 = 1 (mod p)



Example: 𝒁𝟏𝟏
∗

1
2

4

8

5
10

9

7

3

6
1

10

1

10

1
10

1

10

1

10

f(x) = x5

(11 – 1)/2 = 5

1
-1

1

-1

1
-1

1

-1

1

-1

Not a coincidence:

(x(p-1)/2)2 = 1 implies that x=±1

another way to look at it:
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Hence we get a problem:

g – a generator of 𝒁𝒑
∗

f: {0,...,p - 1} → 𝒁𝒑
∗ defined as f(x) = gx is a one-way

function, but

from f(x) one can compute the parity of x

(by checking if 𝒇 𝒙 ∈ 𝐐𝐑)...

For some applications this is not good.

(but sometimes people don’t care)
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What to do?

Instead of working in 𝒁𝒑
∗ work in its subgroup: QRp

How to find a generator of  QRp?
Choose p that is a strong prime, that is: 

p = 2q + 1, with q prime.

Hence QRp has a prime order (q).

Every element (except of 1) of a group of a prime 
order is its generator!

Therefore: every element of QRp is a generator. Nice...



Example

11 is a strong prime (because 5 is a prime)

1
2

4

8

5
10

9

7

3

6 1

4

59

3
𝒁𝟏𝟏
∗ QR11



How to compute square roots 
modulo a prime p?

Yes!

We show it only for p = 3 (mod 4) (for p = 1 (mod 4) this 
fact also holds, but the algorithm and the proof are more 
complicated).

How to compute square root of x in reals?

One method: compute x½

Problem “½” doesn’t make sense in 𝒁𝒏
∗ ...



Write p = 4m + 3.

Fact 𝒙 = 𝒙𝒎+𝟏

Proof:

Hence: order of QRp

is equal to 
(p-1)/2 = (4m+2)/2 

= 2m + 1

(xm+1)2 = x2(m+1)

= x2m+1+1

= x2m+1 ⋅ x1

= x1

x2m+1 is equal to 1 because of 
this



Plan

1. Role of number theory in 
cryptography

2. Classical problems in 
computational number theory

3. Finite groups

4. Cyclic groups, discrete log

5. Group 𝒁𝑵
∗ and its subgroups

6. Elliptic curves
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Chinese Remainder Theorem (CRT)

Let N = pq, where p and q are two distinct primes.
Define:  f(x) := (x mod p, x mod q)

Chinese Remainder Theorem (CRT): 
f is an isomorphism between
1. ZN and 𝒁𝒑 × 𝒁𝒒
2. 𝒁𝑵

∗ and 𝒁𝒑
∗ × 𝒁𝒒

∗

To prove it we need to show that
• f is a homorphism .

– between ZN and 𝒁𝒑 × 𝒁𝒒 , and 

– between 𝒁𝑵
∗ and 𝒁𝒑

∗ × 𝒁𝒒
∗ .

• f is a bijection:
– between ZN and 𝒁𝒑 × 𝒁𝒒 , and 

– between 𝒁𝑵
∗ and 𝒁𝒑

∗ × 𝒁𝒒
∗ .
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𝒇: 𝒁𝑵 → 𝒁𝒑 × 𝒁𝒒 is a homomorphism

Proof:

f(a + b)

(a + b mod p,  a + b mod q)

(((a mod p) + (b mod p)) mod p,  ((a mod q) + (b mod q)) mod q)

(a mod p, a mod q) + (b mod p, b mod q)

f(a) + f(b)

=
=

=
=
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𝒇: 𝒁𝑵
∗ → 𝒁𝒑

∗ × 𝒁𝒒
∗ is a homomorphism

Proof:

f(a · b)

(a · b mod p,  a · b mod q)

(((a mod p) · (b mod p)) mod p,  ((a mod q) · (b mod q)) mod q)

(a mod p, a mod q) · (b mod p, b mod q)

f(a) · f(b)

=
=

=
=
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An example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 0 1 2 0 1 2 0 1 2 3 1 2

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

i

i mod 5

i mod 3

0

1

2

0               1                 2               3                4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Z15:

i mod 5

i mod 3
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By the way: it’s not always like this!

Z24:
i mod 6

i mod 4

0 1 2 3 4 5

0 0,12 8,20 4,16

1 1,13 9,21 5,17

2 6,18 2,14 10,22

3 7,19 3,15 11,23

Consider p = 4 and q = 6:
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If p and q are distinct primes then
𝒇: 𝒁𝑵 → 𝒁𝒑 × 𝒁𝒒 is a bijection

Proof:

We first show that it is injective.

If f(i) = f(j) then 

i mod p = j mod p →    p divides i-j

and i mod q = j mod q → q divides i-j

Since |ZN| = N = pq = |Zp× Zq| we are done! 

N=pq divides i-j

because p and q are distinct 
primes

i = j mod N

f(x) := (x mod p, x mod q)



𝒇: 𝒁𝑵
∗ → 𝒁𝒑

∗ × 𝒁𝒒
∗ is also a bijection

0            1               2      3          4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

𝒁𝟏𝟓
∗

𝒁𝟓
∗

𝒁𝟑
∗

Look at Z15:

Since we have shown that f is injective it is enough to show that 

𝒁𝑵
∗ = 𝒁𝒑

∗ × |𝒁𝒒
∗ |

= (p-1)(q-1)

0

2

1
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N = pq

Which elements of ZN are not in 𝒁𝑵
∗ ?

• 0
• multiples of p:

{p,...,(q-1)p}
(there are q-1 of them)

• multiples of q:
{q,...,(p-1)q}
(there are p-1 of them).

• Summing it up:
1 + (q - 1) + (p - 1) = q + p -1

So 𝒁𝑵
∗ has pq - (q + p - 1) elements.

= pq - p - q + 1
= (p - 1)(q - 1)

QED

These sets 
are disjoint 
since p and 

q are 
distinct 
primes
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How does it look for large p and q?

ZN

𝒁𝑵
∗

mod p

mod q

pq is called RSA modulus
𝒁𝑵
∗ is called an RSA group

technical assumption: p ≠ q

we will often forget to mention it
(since for large p and q the 
probability that this p = q is 

negligible)



Fact

(f(x) := (x mod p, x mod q))

f is easy to compute (this is trivial)

f-1 is also easy to compute (this is also a simple fact)



The inverse of f(x) := (x mod p, x mod q)

Let 

c1 := (q mod p)-1 mod p

c2 := (p mod q)-1 mod q

Then 

g(y1,y2) := (q c1 y1 + p c2 y2) mod pq

is the inverse of f.

(exercise) 



By the way
Remember that we observed that 𝒁𝟏𝟓

∗ is not cyclic?

Now we know why:
ax mod pq = 1 

iff
ax mod p = 1 and ax mod q = 1  

iff
x | p - 1 and x | q - 1 

iff
x | lcm(p-1,q-1)

for p=3 and q=5 it is
equal to:

lcm(2,4) = 4



More general version of CRT

p1,..., pn – such that for every i and j we have
gcd(pi,pj)

Define
f(x) := (x mod p1,..., x mod pn)

Let M =𝒑𝟏 ⋅ ⋯ ⋅ 𝒑𝒏 . Then foollowing f is an isomorphism
𝒇: 𝒁𝑴 → 𝒁𝒑𝟏 ×⋯× 𝒁𝒑𝒏

and
𝒇: 𝒁𝑴

∗ → 𝒁𝒑𝟏
∗ ×⋯× 𝒁𝒑𝒏

∗

Moreover f and f-1 can be computed efficiently.
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Euler’s φ function

Define
φ(N) = |𝒁𝑵

∗ | = |{𝒂 ∈ 𝒁𝑵: gcd(a,N) = 1}|.

Euler’s theorem:
For every 𝒂 ∈ 𝒁𝑵

∗ we have aφ(N) = 1 mod N.
(trivially follows from the fact that for every 𝒈 ∈ 𝐆 we 

have g|G| = 1).

Special case (“Fermat's little theorem”)
For every prime p and every 𝒂 ∈ {𝟏,… , 𝒑 − 𝟏} we have

ap-1 = 1 mod N.
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How to compute φ(N), where N = pq?

Hence, computing φ(N) cannot be harder than 
factoring.

Fact
Computing φ(N) is as hard as factoring N.

Of course if p and q are known then it is easy 
to compute φ(N), since 

φ(N) = (p-1)(q-1).
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Computing φ(N) is as hard as factoring N.

Suppose we can compute φ(N).  We know that

(p-1)(q-1) = φ(N)

pq = N

It is a system of 2 equations with 2 unknowns (p and q). 

We can solve it:

p = N/q 

(N/q - 1)(q - 1) = φ(N)

(1)

(2)

(1)

(2)

q2 + (φ(N) – N – 1)q + N = 0

it is a quadratic equation
so we can solve it (in R)
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Which problems are easy and which 
are hard in 𝒁𝑵

∗ (N = pq)? 

• multiplying elements?
easy!

• finding inverse?
easy! (Euclidean algorithm)

• computing φ(N) ? 
hard! - as hard as factoring N

• raising an element to power e
(for a large e)?

easy!
• computing eth root (for a large e)?



Computing eth roots modulo N

In other words, we want to invert a function:

𝒇: 𝒁𝑵
∗ → 𝒁𝑵

∗

defined as

f(x) = xe mod N.

This is possible only if f is a permutation.

Lemma
f is a permutation if and only if gcd(e, φ(N)) = 1.

In other words: 𝒆 ∈ 𝒁𝛗 𝑵
∗ (note: a “new” group!) 



“f(x) = xe mod N is a permutation if 
and only if gcd(e, φ(N)) = 1.”

f(x) = xe mod N
is a permutation 

gcd(e, φ(N)) = 1
1.

Let d be an inverse of e in 𝒁𝛗(𝑵)
∗ .  That is:

d is such that d · e = 1 mod φ(N).
Then:

f d(x) =  (xe)d = xed = xed mod φ(N)

f(x) = xe mod N
is a permutation 

gcd(e, φ(N)) = 1
2.

[exercise]

= x1



Computing eth root – easy, or hard?

Suppose gcd(e, φ(N)) = 1

We have shown that the function

f(x) = xe mod N (defined over 𝒁𝑵
∗ )

has an inverse

f-1(x) = xd mod N, where d is an inverse of e in 𝒁𝛗 𝑵
∗

Moral:
If we know φ(N) we can compute the roots efficiently.

What if we don’t know φ(N)?



Can we compute the eth root if we do not 
know φ(N)?

It is conjectured to be hard.

This conjecture is called an RSA assumption. More precisely:

RSA assumption
For any randomized polynomial time algorithm A we have:

P(ye = x mod N :  y := A(x,N,e)) is negligible

where  N = pq where p and q are random primes such that 
|p| = |q|, and x is a random element of 𝒁𝑵

∗
, and e is random

element of 𝒁𝛗(𝑵)
∗



What can be shown?

Does the RSA assumption follow from the 
assumption that factoring is hard?

We don’t know... 

What can be shown is that 

computing d from e is not easier

than factoring N.
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𝒁𝑵
∗ 𝒁𝑵

∗

easy

• easy
(if you know p,q)

• believed to be hard
(otherwise)

f(x) = xe

Functions like this are called trap-door one-way 
permutations. 

f is called an RSA function and is extremely important.



Outlook

N – a product of two large primes

factoring N
is hard

computing φ(N)
hard

computing d from e
is hard 

computing 
eth roots 

in𝒁𝑵
∗ is hard

P ≠ NP



Square roots modulo N=pq

So, far we discussed a problem of computing the eth 
root modulo N.

What about the case when e = 2?

Clearly gcd(2,φ(N)) ≠ 1, so f(x) = x2 is not a bijection.

Question

Which elements have a square root modulo N?



Quadratic Residues modulo pq

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 4 3 1 5 6 4 4 9 10 1 12 4 1

Observation:  every quadratic residue modulo 15 has exactly
4 square roots, and hence |𝐐𝐑𝟏𝟓| = |𝒁𝟏𝟓

∗ | / 4.

𝒁𝟏𝟓
∗ :

𝐐𝐑𝟏𝟓:
1 4

a

a2



A lemma about QRs modulo pq

Proof:
𝒙 ∈ 𝐐𝐑𝑵

iff 
x = a2 mod N, for some a

iff (by CRT)
x = a2 mod p and x = a2 mod q

iff
x mod p ∈ 𝐐𝐑𝒑 and x mod q ∈ 𝐐𝐑𝒒

𝐐𝐑𝒒

𝐐𝐑𝒑

𝒁𝑵
∗ :

mod p

mod q

Fact:  For N=pq we have |𝐐𝐑𝑵| = |𝒁𝑵
∗ | / 4.

𝐐𝐑𝑵



0

1

2

0         1           2         3     4

0

2

3

5 8

12

Z15:

𝒁𝟏𝟓
∗

QRs modulo pq – an example

𝐐𝐑𝟑

𝐐𝐑𝟓

𝐐𝐑𝟏𝟓

6

11

9

14

710 131 4

12 mod 5
42 mod 5

22 mod 5
32 mod 5

12 mod 3
22 mod 3



Every x ∈ QRN has exactly 4 square roots

More precisely, every z = x2 has the square 
roots x++ and x+-, x-+, x-- such that:

• x++= x (mod p) and x++ = x (mod q)

• x+-= x (mod p) and x+- = -x(mod q)

• x-+ = -x (mod p) and x-+ = x (mod q)

• x-- = -x(mod p) and x-- = -x (mod q)

equals to x

equals to -x



Jacobi Symbol

𝐐𝐑𝒑

𝐐𝐑𝒒

mod q

mod p

𝐐𝐑𝑵

for N=pq define JN(x) := Jp(x) · Jq(x)

+ 1      if 𝒙 ∈ 𝐐𝐑𝒑for any prime p define Jp(x) := 
- 1      otherwise

+1 -1

-1 +1

JN(x) := 

𝒁𝑵
+ ≔ {𝒙: 𝐉𝒏 𝒙 = +𝟏}

Jacobi symbol can be computed efficiently! (even in p and q are 
unknown)

It is a subgroup of 𝒁𝑵
∗



Algorithmic questions about QR

Suppose N=pq

Is it easy to test membership in 𝐐𝐑𝑵?

Fact: if one knows p and q – yes!

What if one doesn’t know p and q?

Because: 
1. testing membership modulo a prime is easy
2. the “CRT function” 

f(x) := (x mod p, x mod q)
can be efficiently computed in both directions



Quadratic Residuosity Assumption 

𝐐𝐑𝒑

𝐐𝐑𝒒

𝒁𝑵
∗ :

Quadratic Residuosity Assumption (QRA):

For a random 𝒂 ∈ 𝒁𝑵
+ it is computationally hard to 

determine if 𝒂 ∈ 𝐐𝐑𝑵.
Formally: for every polynomial-time probabilistic 
algorithm D the value:

|P(D(N,a) = Q(N,a)) – ½|
(where 𝒂 ← 𝒁𝑵

+) is negligible.

𝐐𝐍𝐑𝒑

𝐐𝐍𝐑𝒑 ?
𝒂 ∈ 𝒁𝑵

+

↓

𝐐𝐑𝑵

Q(N,a) = 1 if 𝒂 ∈ 𝐐𝐑𝑵

0 otherwise



So, how to compute a square root of 𝑥 ∈ 𝐐𝐑𝑵 ?

Fact
Let N be a random RSA modulus.
The problem of computing square roots (modulo N) of 

random elements in QRN is poly-time equivalent to the 
problem of factoring N.

Proof
We need to show that:

one can 
factor N in 
poly-time 

one can 
compute 

square roots 
modulo N

(1)

(2)



This follows from the fact that computing square roots 
modulo a prime p is easy.

one can factor 
N in poly-time 

one can 
compute square 
roots modulo N

(1)

x

1. Let
(a,b) = f(x)

2. Compute α and β
such that

• α2 = a mod p
• β2 = a mod q

3. Output
• f-1(α,β)
• f-1 (-α,β)
• f-1 (α,-β)
• f-1 (-α,-β)

f(x) = (x mod p, x mod q) – the “CRT function”



one can factor 
N in poly-time 

one can 
compute square 
roots modulo N

(2)

Suppose we have an algorithm B that computes the square 
roots.
We construct an algorithm A that factors N.

AN

1. select a random x
2. set z := x2 mod N

3. if y = x or y = -x (mod N)
then go to 1

4. otherwise output 
gcd(N, x – y)

z B

y



To complete the proof we show that:

1. the probability that y = x or y = -x is equal 
to 1/2,

2. If y ≠ x and y ≠ -x then

gcd(N, x – y) > 1.



“the probability π that y = x or y = -x
is equal to 1/2”

Recall that every z = x2 has the square roots 
x++ and x+-, x-+, x-- such that:

• x++= x (mod p) and x++ = x (mod q)

• x+-= x (mod p) and x+- = -x(mod q)

• x-+ = -x (mod p) and x-+ = x (mod q)

• x-- = -x(mod p) and x-- = -x (mod q)

equals to x

equals to -x



If we are unlucky it always happens 
that:

𝒁𝑵
∗

x  

B

x--

x+-

x-+

z = x2

y = x



Or:

𝒁𝑵
∗

x  

B

x--

x+-

x-+

z = x2

y = x--



Observation

Since x is 
chosen 

randomly each 
x++, x+-, x-+, x--

is chosen with 
the same 

probability
Therefore the 

probability π is 
equal to 1/2.

𝒁𝑵
∗

x  

B

x--

x+-

x-+

z = x2



“Suppose that y ≠ x and y ≠ -x.
Then gcd(N, x – y) > 1”

We know that y is such that

y = x (mod p) and y = -x (mod q)

(the other case is symmetric)

Hence y ≠ x mod N, and therefore y - x ≠ 0 mod N.

On the other hand:

y - x = 0 mod p

Therefore 

gcd(N, y - x) = p.

QED



Outlook

Groups that we have seen:

• 𝒁𝒑
∗

• 𝒁𝑵
∗ for N = pq

• subgroups: QRp and QRN

hard problem:
discrete log

hard problem:
computing the eth root



Other interesting groups

• multiplicative groups of a field GF(2p),

• groups based on the elliptic curves

we will now talk 
about it now

advantage:
much smaller key 

size in practive



Plan

1. Role of number theory in 
cryptography

2. Classical problems in 
computational number theory

3. Finite groups

4. Cyclic groups, discrete log

5. Group 𝒁𝑵
∗ and its subgroups

6. Elliptic curves



Elliptic curves over the reals

Let a,b ∈ R be two numbers such that

4a3 + 27b2 ≠ 0

A non-singular elliptic curve is a set E of 
solutions (x,y) ∈ R2 to the equation

y2 = x3 + ax + b

together with a special point O called the 

point in infinity.



Example y2 = 4x3 - 4x + 4



An abelian group over an elliptic 
curve

E – elliptic curve

(E,+) – a group

neutral element: O

inverse of P = (x,y):
P = (x,-y)

P
.

-P
.



“Addition”

Suppose P,Q ∈ E \ {O} where P=(x1,y1) and 

Q=(x2,y2).  Consider the following cases:

1. x1 ≠ x2

2. x1 = x2 and y1 = -y2

3. x1 = x2 and y1 = y2



Case 1: x1≠x2

P=(x1,y1) and Q=(x2,y2)

L – line through P and Q

Fact
L intersects E in exactly one point
R = (x3,y3).

where:

x3 = λ2 - x1 - x2

y3 = λ(x1 - x3) - y1

and

λ = (y2 - y1)/(x2 - x1)

P

Q
.

R

L

P + Q = -R
.

.

.



Case 2: 
x1 = x2 and y1 = -y2

P=(x1,y1) and Q=(x2,y2)

Q
.

P
.

P + Q = O



Case 3: 
x1 = x2 and y1 = y2

P=(x1,y1) and Q=(x2,y2)

L – line tangent to E at point R

Fact
L intersects E in exactly one point
R = (x3,y3).

where:

x3 = λ2 - x1 - x2

y3 = λ(x1 - x3) - y1

and

λ = (3𝒙𝟏
𝟐 y2 + a)/(2y1)

P=Q
. R

.

P + Q = -R
.



How to prove that this is a group?

Easy to see:

• addition is closed on the set E

• addition is commutative

• O is an identity

• every point has an inverse

What remains is associativity (exercise).



How to use these groups in cryptography?

Instead of the reals use some finite field.

For example Zp, where p is prime.

All the formulas remain the same!



Example

x x3 + x + 6 mod 11 quadratic 
residue?

y

0 6 no

1 8 no

2 5 yes 4,7

3 3 yes 5,6

4 8 no

5 4 yes 2,9

6 8 no

7 4 yes 2,9

8 9 yes 3,8

9 7 no

10 4 yes 2,9



Hasse’s Theorem

Let E be an elliptic curve defined over Zp where
p > 3 is prime.

𝒑 + 𝟏 − 𝟐 𝒑 ≤ 𝑬 ≤ 𝒑 + 𝟏 + 𝟐 𝒑



How to use the elliptic curves in 
cryptography?

(E,+) - elliptic curve

Sometimes (E,+) is cyclic or it contains a large 
cyclic subgroup (E’,+).

There are examples of such (E,+) or (E’,+)
where the discrete-log problem is believed 
to be computationally hard!
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