Lecture 7
 A Brush-up on Number Theory and Algebra

Stefan Dziembowski

www.crypto.edu.pl/Dziembowski
University of Warsaw

Plan

1. Role of number theory in cryptography
2. Classical problems in computational number theory
3. Finite groups
4. Cyclic groups, discrete log
5. Group Z_{N}^{*} and its subgroups
6. Elliptic curves

Number theory in cryptography - advantages

1. security can (in principle) be based on famous mathematical conjectures,
2. the constructions have a "mathematical structure", this allows us to create more advanced constructions (public key encryption, digital signature schemes, and many others...).
3. the constructions have a natural security parameter (hence they can be "scaled").

Additional advantage

a practical application of an area that was never believed to be practical...
(a wonderful argument for all theoreticians!)

Number theory in cryptography disadvantages

1. cryptography based on number theory is much less efficient!
2. the number-theoretic "structure" may help the cryptoanalyst...

Number theory as a source of hard problems

In this lecture we will look at some basic number-theoretic problems,

identifying those that may be useful in
cryptography.

Plan

1. Role of number theory in cryptography
2. Classical problems in computational number theory
3. Finite groups
4. Cyclic groups, discrete log
5. Group Z_{N}^{*} and its subgroups
6. Elliptic curves

Famous algorithmic problems in number theory

primality testing:

input: $a \in \mathbf{N}$ output:

- yes if a is a prime,
- no otherwise

factoring:

input: $a \in \mathrm{~N}$ output: factors of a
this problem is believed to be computationally hard if a is a product of two long random primes p and q, of equal length.

Primality testing

x - the number that we want to test

Sieve of Eratosthenes (ca. 240 BC):
takes \sqrt{x} steps, which is exponential in $|x|=\log _{2} x$

Miller-Rabin test (late 1970s) is probabilistic:

- if x is prime it always outputs yes
- if X is composite it outputs yes with probability at most $1 / 4$.

Probability is taken only over the internal randomness of the algorithm, so we can iterate!

The error goes to zero exponentially fast.
This algorithm is fast and practical!

Deterministic algorithm of Agrawal et al. (2002) polynomial but very inefficient in practice

How to select a random prime of length n ?

Select a random number x and test if it is prime.

Prime Number Theorem

Let
$\pi(x):=$ number of n's such that
$n \in\{1, \ldots, x\}$ and n is prime

Then

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \ln (x)}=1 \circ
$$

$$
\pi(x) \approx \frac{x}{\ln (x)}
$$

For example if $x=2^{1000}$ then

$$
\pi(x) / x \approx 0.0014
$$

Hence, the set of primes is "dense".

Factoring is believed to be hard!

Factoring assumption.

Take random primes p and q of length n.
Set $N=p q$.
No polynomial-time algorithm that is given N can find p and q in with a non-negligible probability.

Factoring is a subject of very intensive research.

Currently $|N|=2048$ is believed to be a safe choice.

So we have a one-way function!

$$
f(p, q)=\underset{\text { (assuming the factoring assumption holds). }}{p q \text { is one-way }} .
$$

Using the theoretical results [HILL99] this is enough to construct secure encryption schemes.

It turns out that we can do much better:
based on the number theory we can construct efficient schemes,
that have some very nice additional properties (public key cryptography!)

But how to do it?
We need to some more maths... ${ }_{11}$

Notation

Suppose \boldsymbol{a} and \boldsymbol{b} are integers, such that $\boldsymbol{a} \neq \mathbf{0}$
$a \mid b:$

- a divides b, or
- a is a divisor of b, or
- $\quad a$ is a factor of b
(if $a \neq 1$ then a is a non-trivial factor of b)
$\operatorname{gcd}(a, b)=$ "the greatest common divisor of a and b "
$\operatorname{lcm}(a, b)=$ "the least common multiple of a and b "
If $\operatorname{gcd}(a, b)=1$ then we say that a and b are relatively prime.

How to compute $\operatorname{gcd}(a, b)$?

Euclidean algorithm

Recursion:
(assume $a \geq b \geq 0$)
$\operatorname{gcd}(a, b)=$ if $b \mid a$
then return b
else return $\operatorname{gcd}(b, a \bmod b)$
It can be shown that

- this algorithm is correct (induction),
- it terminates in polynomial number of steps.

Example

computing $\operatorname{gcd}(185,40)$:

a	b	a mod b
185	40	25
40	25	15
25	15	10
15	10	5
10	5	0

Claim

Let a and b be positive integers.
There always exist integers X and Y such that

$$
X a+Y b=\operatorname{gcd}(a, b)
$$

X and Y can be computed using the extended Euclidian algorithm.

Plan

1. Role of number theory in cryptography
2. Classical problems in computational number theory
3. Finite groups
4. Cyclic groups, discrete log
5. Group Z_{N}^{*} and its subgroups
6. Elliptic curves

Groups

A group is a set G along with a binary operation \circ such that:

- [closure] for all $\boldsymbol{g}, \boldsymbol{h} \in \boldsymbol{G}$ we have $\boldsymbol{g} \circ \boldsymbol{h} \in \boldsymbol{G}$,
- there exists an identity $e \in G$ such that for all $g \in G$ we have

$$
e \circ g=g \circ e=g
$$

- for every $\boldsymbol{g} \in \boldsymbol{G}$ there exists an inverse of, that is an element \boldsymbol{h} such that

$$
\boldsymbol{g} \circ \boldsymbol{h}=\boldsymbol{h} \circ \boldsymbol{g}=\boldsymbol{e}
$$

- [associativity] for all $\boldsymbol{g}, \boldsymbol{h}, \boldsymbol{k} \in \boldsymbol{G}$ we have

$$
g \circ(h \circ k)=(g \circ h) \circ k
$$

- [commutativity] for all $g, h \in G$ we have

$$
g \circ h=h \circ g
$$

if this holds, the group is called abelian

Additive/multiplicative notation

Convention:

[additive notation]

If the groups operation is denoted with + , then:
the inverse of g is denoted with $-g$, the neutral element is denoted with 0 , $g+\cdots+g$ (n times) is denoted with $n g$.

[multiplicative notation]

If the groups operation is denoted " \times " or ".", then: sometimes we write $g h$ instead of $g \cdot h$, the inverse of g is denoted g^{-1} or $1 / g$. the neutral element is denoted with 1 , $g \cdots \cdots \cdot g$ (n times) is denoted with g^{n} $\left(g^{-1}\right)^{n}$ is denoted with g^{-1}.

Subgroups

A group G is a subgroup of H if

- G is a subset of \mathbf{H},
- the group operation \circ is the same as in \mathbf{H}

A cross product of groups

(\mathbf{G}, O) and (\mathbf{H}, \square) - groups

Define a group ($\mathrm{G} \times \mathrm{H}, \bullet$) as follows:

- the elements of $\mathrm{G} \times \mathrm{H}$ are pairs (g, h), where $g \in G$ and $\boldsymbol{h} \in \boldsymbol{H}$.
- $(g, h) \cdot\left(g^{\prime}, h^{\prime}\right)=\left(g \circ g^{\prime}, h \square h\right)$.

It is easy to verify that it is a group.

Examples of groups

- \mathbf{R} (reals) is not a group with multiplication.
- $\mathbf{R} \backslash\{0\}$ is a group with multiplication.
- Z (integers):
- is a group under addition (identity element: 0),
- is not a group under multiplication.
- $Z_{N}=\{0, \ldots, N-1\}$ (integers modulo N) is a group under addition modulo N (identity element: 0)
- If \boldsymbol{p} is a prime then $\boldsymbol{Z}_{p}^{*}=\{\mathbf{1}, \ldots, \boldsymbol{p}-\mathbf{1}\}$ is a group under multiplication modulo p (identity element: 1) (we will discuss it later)
Z_{N} is a group under addition. Is it also a group under multiplication?
No: $\mathbf{0}$ doesn't have an inverse.
What about other elements of Z_{N} ?
Example $N=12$.
Only: 1,5,7,11 have an inverse!

Why?
Because they are relatively prime to 12 .

	0	1	2	3	4	5	6	7	8	9	10	11
0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11
2	0	2	4	6	8	10	0	2	4	6	8	10
3	0	3	6	9	0	3	6	9	0	3	6	9
4	0	4	8	0	4	8	0	4	8	0	4	8
5	0	5	10	3	8	1	6	11	4	9	2	7
6	0	6	0	6	0	6	0	6	0	6	0	6
7	0	7	2	9	4	11	6	1	8	3	10	5
8	0	8	4	0	8	4	0	8	4	0	8	4
9	0	9	6	3	0	9	6	3	0	9	6	3
10	0	10	8	6	4	2	0	10	8	6	4	2
11	0	11	10	9	8	7	6	5	4	3	2	1

Observation

If $\operatorname{gcd}(a, n)>1$ then for every integer b we have $a b \bmod n \neq 1$.

Proof

Suppose for the sake of contradiction that $a b \bmod n=1$.
Hence we have:

$$
\begin{gathered}
a b=n k+1 \\
\downarrow \\
a b-n k=1
\end{gathered}
$$

Since $\operatorname{gcd}(a, n)$ divides both $a b$ and $\boldsymbol{n k}$ it also divides $\boldsymbol{a b} \boldsymbol{-} \boldsymbol{n k}$.

Thus $\operatorname{gcd}(a, n)$ has to divide 1. Contradiction.
QED

Define $Z_{N}^{*}=\left\{a \in Z_{N}: \operatorname{gcd}(a, N)=1\right\}$.
Then Z_{N}^{*} is an abelian group under multiplication modulo N.

Proof

First observe that Z_{N}^{*} is closed under multiplication modulo N.
This is because is a and b are relatively prime to N, then $a b$ is also relatively prime to N.
Associativity and commutativity are trivial.
1 is the identity element.
It remains to show that for every $a \in Z_{N}^{*}$ there exist $b \in Z_{N}^{*}$ that is an inverse of a modulo N.

We say that \boldsymbol{b} is an inverse of \boldsymbol{a} modulo N if:

$$
a \cdot b=1 \bmod N
$$

Lemma

Suppose that $\operatorname{gcd}(a, N)=1$. Then for every $a \in Z_{N}^{*}$ there always exist an element $X \in Z$ such that $X \cdot a \bmod N=1$.

Proof Since $\operatorname{gcd}(a, N)=1$ there always exist integers X and Y such that

$$
X a+Y N=1
$$

Therefore $X a=1(\bmod N)$.

Observation
Such an X can be efficiently computed (using the extended Euclidian algorithm).

What remains?

\boldsymbol{X} (from the previous lemma) can be such that

$$
\mathbf{X} \notin \mathbf{Z}_{N}^{*}
$$

What to do?
define $b:=X \bmod N$ we need to show that

$$
a \cdot b=1 \bmod N
$$

This will imply that
$b \in Z_{N}^{*}$
because if
$\boldsymbol{a} \cdot \boldsymbol{b}=\mathbf{1} \bmod \boldsymbol{N}$
then $\operatorname{gcd}(b, N)=1$

If

$b:=X \bmod N$ then $b=X+t N$
So
$\boldsymbol{a} \boldsymbol{b}=\boldsymbol{a} \cdot(X+t N)$
$=a X+a t N$
$=1(\bmod N)$

Remember that X is such that

$$
a X \bmod N=1
$$

An example

p - a prime

$$
Z_{p}^{*}:=\{1, \ldots, p-1\}
$$

Z_{p}^{*} is an abelian group under multiplication modulo p.

A simple observation

For every $a, b, c \in G$. If

$$
a c=b c
$$

then

$$
a=b .
$$

Corollary

In every group G and every element $b \in G$ the function

$$
\begin{gathered}
\mathrm{f}: G \rightarrow G \\
f(x)=x \circ b
\end{gathered}
$$

is a bijection.
(or, in other words, a permutation on G).

Example: $\boldsymbol{Z}_{\mathbf{1 1}}^{\boldsymbol{*}}$

x	$\mathbf{1}$	2	3	4	5	6	7	8	9	10	
$\mathrm{f}(\mathrm{x})$	5	10	4	9	3	8	2	7	1	6	$f(x)=5 \cdot x \bmod 11$

Permutations have cycles.
Let's look now at the cycles that contain 1 !

Example: $f(x)=5^{-x} \bmod 11$

Example: $f(x)=10 \cdot x \bmod 11$

Example: $f(x)=2 \cdot x \bmod 11$

It has to be a cycle!

If we do it in Z_{n}^{*}, where \boldsymbol{n} is not prime...
for example:
$n=15$
$g=3$

If n is a prime this cannot happen because
 $f(x)=x \cdot g \bmod n$
is a permutation
so we cannot have

$$
\begin{aligned}
& f\left(x_{1}\right)=f\left(x_{2}\right) \\
& \text { for } x_{1} \neq x_{2}
\end{aligned}
$$

Order of an element

Definition

An order of g (denoted $\operatorname{ord}(g)$) is the smallest integer $\boldsymbol{i}>0$ such that $g^{i}=1$.

Of course $i \leq|G|$

Look...

Let $m:=\left|Z_{11}^{*}\right|=10$

Observe: in these examples
we will now show that it's not a coincidence

- $g^{m}=1$
- the order of g divides the order of the group G.

Lemma

G - an abelian group, $m:=|G|, g \in G$.
Then $g^{m}=1$.

Proof

Suppose $G=\left\{g_{1}, \ldots, g_{m}\right\}$. Observe that

$$
\begin{array}{ll}
\begin{array}{l}
\text { from associativity } \\
\text { and commutativity }
\end{array} & =\left(g \circ g_{1}\right) \circ \cdots \circ\left(g \circ g_{m}\right) \\
=g^{m} \circ\left(g_{1} \circ \cdots \circ g_{m}\right)
\end{array}
$$

these are the same elements (permuted), because the function

$$
\begin{aligned}
& f(x)=g \circ x \\
& \text { is a } \\
& \text { permutation }
\end{aligned}
$$

Hence $\boldsymbol{g}^{m}=1$.

Observation

G - an abelian group, $m:=|G|, g \in G, i \in \mathbf{N}$.
Then $g^{i}=g^{i \bmod m}$.
Proof
Write $i=q m+r$, where $r=i \bmod m$, and q is
some integer.
We have

$$
g^{i}=g^{q m+r}=\left(g^{m}\right)^{q} \cdot g^{r}=1^{q} \cdot g^{r}=g^{r}
$$

QED

Which orders are possible?

For Z_{11}^{*} :
1,2,5,10
What do the have in
common?
They are the divisors of $10=\left|Z_{11}^{*}\right|$

$$
\begin{gathered}
g=1 \\
\text { order: } 1
\end{gathered}
$$

How does it look for Z_{7}^{*} ?

For Z_{7}^{*} : 1,2,3,6

They are the divisors of

$$
6=\left|Z_{7}^{*}\right|
$$

$g=6$
order: 2

$$
\begin{aligned}
& g=1 \\
& \text { order: } 1
\end{aligned}
$$

1

Generated subgroups

Definition

G - a group, $g \in G, i$ - order of g
$\langle g\rangle:=\left\{g^{0}, \ldots, g^{i-1}\right\}$
$\langle g\rangle$ is a sulbgroup of G generated by g.

Why?

because:

1. it is closed under multpilication

$$
g^{a} \cdot g^{b}=g^{a+b \bmod i}
$$

2. the inverse of every g^{a} exists, and it is equal to

Because: $g^{i-a} \cdot g^{a}=g^{i}=1$

Observe

order of an element g
 =
 order of the group $\langle\boldsymbol{g}\rangle$

We can now use the Lagrange's Theorem

Lagrange's Theorem

If H is a subgroup of G then
|H| divides |G|

So, that's why the order of g divided the order of the group G.

1. Role of number theory in cryptography
2. Classical problems in computational number theory
3. Finite groups
4. Cyclic groups, discrete log
5. Group Z_{N}^{*} and its subgroups
6. Elliptic curves

Cyclic groups

If there exists g such that $\langle\boldsymbol{g}\rangle=\boldsymbol{G}$ then we say that G is cyclic.

Such a g is called a generator of G.

Example

1 is a generator of Z_{10}

Example

3 is a generator of Z_{10}

Example

2 is not a generator of Z_{10}

Observation

Every group G of a prime order is cyclic.
Every element g of \mathbf{G}, except the identity is its generator.

Proof

The order of g has to divide p.
So, the only possible orders of g are 1 or p.

Trivial: x has "order 1 " if $x^{1}=1$

Only identity has order 1 , so all the other elements have order p.

Another fact

Theorem

If p is prime, then Z_{p}^{*} is cyclic.

We leave it without a proof.

We verified that it is true for $p=11$ and $p=7$.

Of course:

Not every element of

$$
\boldsymbol{Z}_{p}^{*}
$$

is its generator.
For example:

$$
p-1
$$

has order 2 because

$$
(p-1)^{2}=p^{2}-2 p+1=1(\bmod p)
$$

Example of a group that is not cyclic

$$
Z_{15}^{*}:
$$

The maximal order is $4 . .$.

Look...

Z_{11}^{*} and Z_{10} are essentially the same group:

$$
g^{a} \cdot g^{b} \bmod 11=g^{a+b \bmod 10}
$$

In other words: Z_{11}^{*} and Z_{10} are isomorphic.

Group isomorphism

G - a group with operation \circ
H - a group with operation \square
Definition A function $f: G \rightarrow H$ is a group isomorphism if 1. it is a bijection, and
2. it is a homomorphism, i.e.: for every $a b \in G$ we have

$$
f(a \circ b)=f(a) \square f(b)
$$

Isomorphic groups

If there exists and isomorphism between \boldsymbol{G} and \boldsymbol{H}, we say that they are isomorphic.

Of course isomorphism is an equivalence relation.

This is an isomorphism

G - a cyclic group of order i
g - a generator of G

Why? Because $\boldsymbol{g}^{a} \cdot \boldsymbol{g}^{b}=\boldsymbol{g}^{a+b \bmod i}$

How to compute g^{x} for large x ?

If the multiplication is easy then we can use the "square-and-multiply" method

Example

What about the other direction?

$$
(g-\text { a generator })
$$

It turns out the in many groups inverting

$$
f(x)=g^{x}
$$

is hard!

The discrete logarithm

Suppose G is cyclic and g is its generator. For every element y there exists x such that

$$
y=g^{x}
$$

Such a x will be called a discrete logarithm of y, and it is denoted as $x:=\log y$.

In many groups computing a discrete log is believed to be hard.

Informally speaking:

$f:\{0, \ldots,|\mathrm{G}|-\mathbb{1}\} \rightarrow \mathrm{G}$ defined as $f(x)=g^{x}$ is believed to be a one-way function (in some groups).

Hardness of the discrete log

In some groups it is easy:

- in Z_{n} it is easy because $a^{e}=e \cdot a \bmod n$
- In Z_{p}^{*} (where p is prime) it is believed to be hard.
- There exist also other groups where it is believed to be hard (e.g. based on the Elliptic curves).
- Of course: if $\mathbf{P}=\mathbf{N P}$ then computing the discrete log is easy.

(in the groups where the exponentiation is easy)

How to define formally "the discrete log assumption"

It needs to be defined for any parameter $\mathbf{1}^{n}$.

Therefore we need an algorithm \mathbf{H} that

- on input $\mathbf{1}^{n}$
- outputs:
- a description of a cyclic group G of order q, such that $|q|=n$,
- a generator g of G.

Example

H on input $\mathbf{1}^{n}$:

outputs a

- random prime p of length n
- a generator of \boldsymbol{Z}_{p}^{*}

The discrete log assumption

For every algorithm A consider the following experiment:

$1{ }^{n}$

Let (G, g) be the output of $\mathrm{H}\left(1^{n}\right)$.
Select random $y \leftarrow \mathrm{G}$.

We say that a discrete logarithm problem is hard with respect to H if

$\mathrm{P}\left(\right.$ A outputs x such that $\left.g^{x}=y\right)$ is negligible in n poly-time
algorithm A

One way function?

This looks almost the same as saying that

$$
f(x)=g^{x}
$$

is a one-way function.
The only difference is that the function f depends on the group G that was chosen randomly.

We could formalize it, by defining:
"one-way function families"

Concrete functions

For the practical applications people often use concrete groups.
In particular it is common to chose some Z_{p}^{*} for a fixed prime p.
For example the RFC3526 document specifies the primes of following lengths:

$$
\text { 1536, 2048, 3072, 4096, 6144, } 8192 .
$$

This is the 1536 -bit prime:

FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D 670C354E 4ABC9804 F1746C08 CA237327 FFFFFFFF FFFFFFFF.
the generator is: 2.

A problem

$$
f:\{0, \ldots, p-1\} \rightarrow Z_{p}^{*}
$$

defined as $f(x)=g^{x}$ is believed to be a one-way function (informally speaking),
but
from $f(x)$ one can compute the parity of x.
We now show how to do it.

Quadratic Residues

Definition
a is a quadratic residue modulo p if there exists b such that

$$
a=b^{2} \bmod p
$$

Why?

QR_{p} - a set of quadratic residues modulo p
QR_{p} is a subgroup of \boldsymbol{Z}_{p}^{*}
$\mathbf{Q N R}_{p}:=\boldsymbol{Z}_{p}^{*} \backslash \mathbf{Q R}_{p}$
because:

- $1 \in \mathbf{Q R}$
- if $a, a^{\prime} \in \mathrm{QR}$
then $a a^{\prime} \in \mathbf{Q R}$

What is the size of $\mathbf{Q R}_{p}$?

Example: $\mathbf{Q R}_{11}$

A proof that $\left|Q_{p}\right|=(p-1) / 2$

Observation

Let g be a generator of \mathbb{Z}_{p}^{*}.
Then $\mathbf{Q R}_{p}=\left\{g^{2}, g^{4}, \ldots, g^{p-1}\right\}$.

Proof

Every element $x \in Z_{p}^{*}$ is equal to g^{i} for some i.
Hence $x^{2}=g^{2 i \bmod (p-1)}=g^{j}$, where j is even.

Example: $\mathbf{Q R}_{\mathbf{1 1}}=\{\mathbf{1}, \mathbf{4}, \mathbf{5}, \mathbf{9}, \mathbf{3}\}$

Is it easy to test if $a \in \mathbf{Q} \mathbf{R}_{p}$?

Observation
$a \in \mathrm{QR}_{p}$ iff $a^{(p-1) / 2}=1(\bmod p)$

Proof

(\rightarrow)
If $a \in \mathbf{Q R}_{p}$ then $a=\mathbf{g}^{2 i}$.
Hence

$$
\begin{gathered}
a^{(p-1) / 2} \\
= \\
\left(g^{2 i}\right)^{(p-1) / 2} \\
= \\
g^{i(p-1)}=1 .
\end{gathered}
$$

$a \in \mathrm{QR}_{p}$ iff $a(p-1) / 2=1(\bmod p)$

(\leftarrow)
Suppose a is not a quadratic residue.
Then $a=g^{2 i+1}$. Hence

$$
\begin{gathered}
a^{(p-1) / 2} \\
=\left(g^{2 i+1}\right)^{(p-1) / 2} \\
=g^{i(p-1) \cdot} \cdot g^{(p-1) / 2} \\
=g^{(p-1) / 2}
\end{gathered}
$$

which cannot be equal to 1 since g is a generator.

Example: $\mathbb{Z}_{\mathbf{1 1}}^{*}$

$(11-1) / 2=5$

another way to look at it:

Not a coincidence:
$\left(x^{(p-1) / 2}\right)^{2}=1$ implies that $x= \pm 1$

Hence we get a problem:

g - a generator of Z_{p}^{*}
$f:\{0, \ldots, p-1\} \rightarrow Z_{p}^{*}$ defined as $f(x)=g^{x}$ is a one-way function, but

> from $f(x)$ one can compute the parity of x
> (by checking if $f(x) \in Q R) \ldots$

For some applications this is not good.
(but sometimes people don't care)

What to do?

Instead of working in Z_{p}^{*} work in its subgroup: $\mathbf{Q R}_{p}$
How to find a generator of $\mathbf{Q R}_{p}$?
Choose p that is a strong prime, that is:

$$
p=2 q+1, \text { with } q \text { prime. }
$$

Hence $\mathbf{Q R}_{p}$ has a prime order (q).
Every element (except of 1) of a group of a prime order is its generator!
Therefore: every element of $\mathbf{Q R} \mathbf{R}_{p}$ is a generator. Nice...

Example

11 is a strong prime (because 5 is a prime)

How to compute square roots modulo a prime p ?

Yes!

We show it only for $p=3(\bmod 4)$ (for $p=1(\bmod 4)$ this fact also holds, but the algorithm and the proof are more complicated).

How to compute square root of x in reals?

One method: compute $\mathbf{x}^{1 / 2}$

Problem " $1 / 2$ " doesn't make sense in $Z_{n}^{*} \ldots$

Write $p=4 m+3$.

Fact $\sqrt{x}=x^{m+1}$
Proof:

$$
\begin{aligned}
\left(x^{m+1}\right)^{2} & =x^{2(m+1)} \\
& =x^{2 m+1+1} \\
& =x^{2 m+1} \cdot x^{1} \\
& =x^{1}
\end{aligned}
$$

Plan

1. Role of number theory in cryptography
2. Classical problems in computational number theory
3. Finite groups
4. Cyclic groups, discrete log
5. Group Z_{N}^{*} and its subgroups
6. Elliptic curves

Chinese Remainder Theorem (CRT)

Let $\mathbf{N}=p q$, where p and q are two distinct primes.
Define: $\mathrm{f}(x):=(x \bmod p, x \bmod q)$

Chinese Remainder Theorem (CRT):

f is an isomorphism between

1. Z_{N} and $Z_{p} \times Z_{q}$
2. Z_{N}^{*} and $Z_{p}^{*} \times Z_{q}^{*}$

To prove it we need to show that

- f is a homorphism .
$-\quad$ between Z_{N} and $Z_{p} \times Z_{q}$, and
$-\quad$ between Z_{N}^{*} and $Z_{p}^{*} \times Z_{q}^{*}$.
- f is a bijection:
- between Z_{N} and $Z_{p} \times Z_{q}$, and
$-\quad$ between Z_{N}^{*} and $Z_{p}^{*} \times Z_{q}^{*}$.
$f: Z_{N} \rightarrow Z_{p} \times Z_{q}$ is a homomorphism

Proof:

$$
\begin{gathered}
f(a+b) \\
\text { " } \\
(a+b \bmod p, a+b \bmod q)
\end{gathered}
$$

$(((a \bmod p)+(b \bmod p)) \bmod p,((a \bmod q)+(b \bmod q)) \bmod q)$ II
$(a \bmod p, a \bmod q)+(b \bmod p, b \bmod q)$
II

$$
f(a)+f(b)
$$

$f: Z_{N}^{*} \rightarrow Z_{p}^{*} \times Z_{q}^{*}$ is a homomorphism

Proof:

$$
\begin{gathered}
f(a \cdot b) \\
\text { II } \\
(a \cdot b \bmod p, a \cdot b \bmod q)
\end{gathered}
$$

II
$(((a \bmod p) \cdot(b \bmod p)) \bmod p,((a \bmod q) \cdot(b \bmod q)) \bmod q)$
II
$(a \bmod p, a \bmod q) \cdot(b \bmod p, b \bmod q)$
II
$f(a) \cdot f(b)$

An example

$$
\mathrm{Z}_{15}:
$$

i mod 3 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 1 | 2 | 3 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

By the way: it's not always like this!

Consider $p=4$ and $q=6$:

If p and q are distinct primes then $f: Z_{N} \rightarrow Z_{p} \times Z_{q}$ is a bijection

$f(x):=(x \bmod p, x \bmod q)$

Proof:

We first show that it is injective.
If $f(i)=f(j)$ then
because p and q are distinct primes
> $\begin{aligned} i \bmod p=j \bmod p & \rightarrow p \text { divides } i-j \\ i \bmod q=j \bmod q & \rightarrow q \text { divides } i-j\end{aligned} \longrightarrow N=p q$ divides $i-j$ and $i \bmod q=j \bmod q \rightarrow q$ divides $i-j$

Since $\left|Z_{N}\right|=N=p q=\left|Z_{p} \times Z_{q}\right|$ we are done!

$f: Z_{N}^{*} \rightarrow Z_{p}^{*} \times Z_{q}^{*}$ is also a bijection

Since we have shown that f is injective it is enough to show that

$$
\left|Z_{N}^{*}\right|=\left|Z_{p}^{*}\right| \times\left|Z_{q}^{*}\right|
$$

$$
=(p-1)(q-1)
$$

Look at Z_{15} :

$N=p q$
Which elements of Z_{N} are not in Z_{N}^{*} ?
These sets are disjoint since p and q are distinct primes

- multiples of q :
$\{q, \ldots,(p-1) q\}$
(there are $\boldsymbol{p}-1$ of them).
- Summing it up:
$1+(q-1)+(p-1)=q+p-1$

$$
\begin{aligned}
& =p q-p-q+1 \\
& =(p-1)(q-1)
\end{aligned}
$$

So Z_{N}^{*} has $p q-(q+p-1)$ elements.

How does it look for large p and q ?

$\bmod p$

$$
Z_{N}^{*}
$$

$p q$ is called RSA modulus Z_{N}^{*} is called an RSA group
technical assumption: $\boldsymbol{p \neq q}$
we will often forget to mention it (since for large p and q the probability that this $p=q$ is negligible)

Fact

$(f(x):=(x \bmod p, x \bmod q))$

f is easy to compute (this is trivial)
f^{1} is also easy to compute (this is also a simple fact)

The inverse of $f(x):=(x \bmod p, x \bmod q)$
Let
$c_{1}:=(q \bmod p)^{-1} \bmod p$
$c_{2}:=(p \bmod q)^{-1} \bmod q$
Then

$$
g\left(y_{1}, y_{2}\right):=\left(q c_{1} y_{1}+p c_{2} y_{2}\right) \bmod p q
$$

is the inverse of f.
(exercise)

By the way

Remember that we observed that Z_{15}^{*} is not cyclic?
Now we know why:

$$
\begin{gathered}
a^{x} \bmod p q=1 \\
\text { iff } \\
a^{x} \bmod p=1 \text { and } a^{x} \bmod q=1 \\
\quad \text { iff } \\
x \mid p-1 \text { and } x \mid q-1 \\
\text { iff } \\
x \mid \operatorname{lcm}(p-1, q-1) \\
\begin{array}{r}
\text { for } p=3 \text { and } q=5 \text { it is } \\
\text { equal to: } \\
\operatorname{lcm}(2,4)=4
\end{array}
\end{gathered}
$$

More general version of CRT

$p_{1}, \ldots, p_{\mathrm{n}}$ - such that for every i and j we have $\operatorname{gcd}\left(p_{i} p_{j}\right)$
Define

$$
f(x):=\left(x \bmod p_{1}, \ldots, x \bmod p_{n}\right)
$$

Let $M=p_{1} \cdots p_{n}$. Then foollowing f is an isomorphism

$$
\begin{aligned}
& f: Z_{M} \rightarrow Z_{p_{1}} \times \cdots \times Z_{p_{n}} \\
& \quad \text { and } \\
& f: Z_{M}^{*} \rightarrow Z_{p_{1}}^{*} \times \cdots \times Z_{p_{n}}^{*}
\end{aligned}
$$

Moreover \boldsymbol{f} and \boldsymbol{f}^{1} can be computed efficiently.

Euler's $\boldsymbol{\varphi}$ function

Define
$\varphi(N)=\left|Z_{N}^{*}\right|=\left|\left\{a \in Z_{N}: \operatorname{gcd}(a, N)=1\right\}\right|$.

Euler's theorem:

For every $a \in Z_{N}^{*}$ we have $a^{\varphi(N)}=1 \bmod N$.
(trivially follows from the fact that for every $g \in G$ we have $g^{|\mathrm{G}|}=1$).

Special case ("Fermat's little theorem")
For every prime p and every $a \in\{\mathbf{1}, \ldots, p-1\}$ we have $a^{p-1}=1 \bmod N$.

How to compute $\varphi(N)$, where $N=p q$?

Of course if p and q are known then it is easy to compute $\varphi(N)$, since

$$
\varphi(N)=(p-1)(q-1)
$$

Hence, computing $\varphi(N)$ cannot be harder than factoring.

Fact
Computing $\varphi(N)$ is as hard as factoring N.

Computing $\varphi(N)$ is as hard as factoring N.

Suppose we can compute $\varphi(N)$. We know that

$$
\left\{\begin{aligned}
(p-1)(q-1) & =\varphi(N) \\
p q & =N
\end{aligned}\right.
$$

It is a system of 2 equations with 2 unknowns (p and q).
We can solve it:

Which problems are easy and which are hard in $Z_{N}^{*}(N=p q)$?

- multiplying elements?
- finding inverse?

easy! (Euclidean algorithm)

- computing $\varphi(N)$?
hard! - as hard as factoring N
- raising an element to power e (for a large e)?
easy!
- computing eth root (for a large e)?

Computing eth roots modulo N

In other words, we want to invert a function:
$f: Z_{N}^{*} \rightarrow Z_{N}^{*}$
defined as

$$
f(x)=x^{e} \bmod N .
$$

This is possible only if f is a permutation.

Lemma

f is a permutation if and only if $\operatorname{gcd}(e, \varphi(N))=1$.
In other words: $\boldsymbol{e} \in \mathbb{Z}_{\varphi(N)}^{*} \quad$ (note: a "new" group!)

$" f(x)=x^{e} \bmod N$ is a permutation if and only if $\operatorname{gcd}(e, \varphi(N))=1$."

1.

$$
\operatorname{gcd}(e, \varphi(N))=1
$$

$$
\begin{aligned}
& f(x)=x^{e} \bmod N \\
& \text { is a permutation }
\end{aligned}
$$

Let \boldsymbol{d} be an inverse of e in $Z_{\varphi(N)}^{*}$. That is: d is such that $d \cdot e=1 \bmod \varphi(N)$.
Then:

$$
f^{d}(x)=\left(x^{e}\right)^{d}=x^{e d}=x^{e d} \bmod \varphi(N)=x^{1}
$$

2.

$$
\operatorname{gcd}(e, \varphi(N))=1
$$

$f(x)=x^{e} \bmod N$ is a permutation

Computing eth root - easy, or hard?

Suppose $\operatorname{gcd}(e, \varphi(N))=1$

We have shown that the function

$$
f(x)=x^{e} \bmod N\left(\text { defined over } Z_{N}^{*}\right)
$$

has an inverse
$f^{1}(x)=x^{d} \bmod N$, where d is an inverse of e in $Z_{\varphi(N)}^{*}$

Moral:
 If we know $\varphi(N)$ we can compute the roots efficiently.

Can we compute the e th root if we do not know $\varphi(N)$?

It is conjectured to be hard.
This conjecture is called an RSA assumption. More precisely:

RSA assumption

For any randomized polynomial time algorithm A we have:

$$
\mathrm{P}\left(y^{e}=x \bmod N: y:=A(x, N, e)\right) \text { is negligible }
$$

where $N=p q$ where p and q are random primes such that $|p|=|q|$, and x is a random element of Z_{N}^{*}, and e is random element of $\boldsymbol{Z}_{\boldsymbol{\varphi}(N)}^{*}$

What can be shown?

Does the RSA assumption follow from the assumption that factoring is hard?

We don't know...

What can be shown is that
computing d from e is not easier than factoring N.

Functions like this are called trap-door one-way permutations.
f is called an RSA function and is extremely important.

Outlook

N - a product of two large primes

Square roots modulo $N=p q$

So, far we discussed a problem of computing the e th root modulo N.

What about the case when $e=2$?

Clearly $\operatorname{gcd}(2, \varphi(N)) \neq 1$, so $f(x)=x^{2}$ is not a bijection.

Question

Which elements have a square root modulo N ?

Quadratic Residues modulo $p q$

Z_{15}^{*} :

a| | 1 | 2 | | 4 | | | 7 | 8 | | | 11 | | 13 | 14 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Observation: every quadratic residue modulo 15 has exactly 4 square roots, and hence $\left|Q R_{15}\right|=\left|Z_{15}^{*}\right| / 4$.

A lemma about QRs modulo $p q$

Fact: For $N=p q$ we have $\left|Q R_{N}\right|=\left|Z_{N}^{*}\right| / 4$.

Proof:

$$
\begin{gathered}
x \in \mathrm{QR}_{N} \\
\text { iff } \\
x=a^{2} \bmod N, \text { for some } a \\
\text { iff }(\operatorname{by} \mathbf{C R T}) \\
x=a^{2} \bmod p \text { and } x=a^{2} \bmod q \\
x \bmod p \in \mathbf{Q R}_{p} \text { and } x \bmod q \in \mathbf{Q R}_{q}
\end{gathered}
$$

QRs modulo $p q$ - an example

Every $\boldsymbol{x} \in \mathbf{Q R}_{N}$ has exactly 4 square roots

More precisely, every $z=x^{2}$ has the square roots x_{++}and x_{+-}, x_{-+}, x_{--}such that:

- $x_{++}=x(\bmod p)$ and $x_{++}=x(\bmod q)$
equals to x
- $x_{+-}=x(\bmod p)$ and $x_{+-}=-x(\bmod q)$
- $x_{-+}=-x(\bmod p)$ and $x_{-+}=x(\bmod q)$
- $x_{--}=-x(\bmod p)$ and $x_{--}=-x(\bmod q)$

Jacobi Symbol

for any prime p define $J_{p}(x):= \begin{cases}+1 & \text { if } x \in \mathbf{Q R}_{p} \\ -1 & \text { otherwise }\end{cases}$
for $N=p q$ define $\mathrm{J}_{N}(x):=\mathrm{J}_{p}(\mathrm{x}) \cdot \mathrm{J}_{q}(\mathrm{x})$

$$
\mathrm{QR}_{p} \bmod p \quad \mathrm{~J}_{N}(x):=
$$

It is a subgroup of $Z_{N}^{*} \quad \square \quad Z_{N}^{+}:=\left\{x: \mathrm{J}_{n}(x)=+\mathbf{1}\right\}$
Jacobi symbol can be computed efficiently! (even in p and q are unknown)

Algorithmic questions about QR

Suppose $N=p q$
Is it easy to test membership in $\mathbf{Q R}_{N}$?
Fact: if one knows \boldsymbol{p} and \boldsymbol{q} - yes!

Because:

1. testing membership modulo a prime is easy
2. the "CRT function"

$$
f(x):=(x \bmod p, x \bmod q)
$$

can be efficiently computed in both directions

What if one doesn't know p and q ?

Quadratic Residuosity Assumption

Z_{N}^{*} :

Quadratic Residuosity Assumption (QRA):

$$
\begin{aligned}
Q(N, a)= & 1 \text { if } a \in \mathbf{Q R}_{N} \\
& 0 \text { otherwise }
\end{aligned}
$$

For a random $a \in Z_{N}^{+}$it is computationally hard to determine if $a \in \mathbf{Q R}_{N}$.
Formally: for every polynomial-time probabilistic algorithm D the value:

$$
|\mathrm{P}(D(N, a)=Q(N, a))-1 / 2|
$$

(where $\boldsymbol{a} \leftarrow Z_{N}^{+}$) is negligible.

So, how to compute a square root of $x \in \mathbf{Q R}_{N}$?

Fact

Let N be a random RSA modulus.
The problem of computing square roots (modulo N) of random elements in $\mathbf{Q R}_{N}$ is poly-time equivalent to the problem of factoring N.

Proof

We need to show that:

one can
 compute
 square roots modulo N

This follows from the fact that computing square roots modulo a prime p is easy.

$$
f(x)=(x \bmod p, x \bmod q)-\text { the "CRT function" }
$$

1. Let

$$
(a, b)=f(x)
$$

2. Compute α and β such that

- $\alpha^{2}=a \bmod p$
- $\beta^{2}=a \bmod q$

3. Output

- $\boldsymbol{f}^{1}(\alpha, \beta)$
- $f^{1}(-\alpha, \beta)$
- $f^{1}(\alpha,-\beta)$
- $f^{1}(-\alpha,-\beta)$
one can factor N in poly-time
compute square roots modulo N

Suppose we have an algorithm B that computes the square roots.
We construct an algorithm A that factors N.

1. select a random x
2. set $z:=x^{2} \bmod N$
3. if $y=x$ or $y=-x(\bmod N)$ then go to 1
4. otherwise output

$$
\operatorname{gcd}(N, x-y)
$$

To complete the proof we show that:

1. the probability that $y=x$ or $y=-x$ is equal to $1 / 2$,
2. If $y \neq x$ and $y \neq-x$ then

$$
\operatorname{gcd}(N, x-y)>1 .
$$

"the probability π that $y=x$ or $y=-x$

 is equal to $1 / \mathbf{2 "}^{\prime \prime}$Recall that every $z=x^{2}$ has the square roots x_{++}and $x_{+,}, x_{-+}, x_{--}$such that:

- $x_{++}=x(\bmod p)$ and $x_{++}=x(\bmod q)$
- $x_{+-}=x(\bmod p)$ and $x_{+-}=-x(\bmod q)$
- $x_{-+}=-x(\bmod p)$ and $x_{-+}=x(\bmod q)$
- $x_{--}=-x(\bmod p)$ and $x_{--}=-x(\bmod q)$ equals to $-x$

If we are unlucky it always happens that:

Or:

Observation

"Suppose that $y \neq x$ and $y \neq-x$. Then $\operatorname{gcd}(N, x-y)>1 "$

We know that y is such that

$$
y=x(\bmod p) \text { and } y=-x(\bmod q)
$$

(the other case is symmetric)
Hence $y \neq x \bmod N$, and therefore $y-x \neq 0 \bmod N$.
On the other hand:

$$
y-x=0 \bmod p
$$

Therefore

$$
\operatorname{gcd}(N, y-x)=p
$$

Outlook

Groups that we have seen:

- $Z_{p}^{*} \underbrace{}_{\substack{\text { hard problem: } \\ \text { discrete } \log }}$
- Z_{N}^{*} for $N=p q \quad \begin{gathered}\text { hard problem: } \\ \text { computing the } e \text { eth root }\end{gathered}$
- subgroups: $\mathbf{Q R}_{p}$ and $\mathbf{Q R}_{N}$

Other interesting groups

- multiplicative groups of a field GF(2^{p}),
- groups based on the elliptic curves
advantage: much smaller key size in practive
we will now talk about it now

1. Role of number theory in cryptography
2. Classical problems in computational number theory
3. Finite groups
4. Cyclic groups, discrete log
5. Group Z_{N}^{*} and its subgroups
6. Elliptic curves

Elliptic curves over the reals

Let $a, b \in \mathbf{R}$ be two numbers such that

$$
4 a^{3}+27 b^{2} \neq 0
$$

A non-singular elliptic curve is a set E of solutions $(x, y) \in \mathbf{R}^{2}$ to the equation

$$
y^{2}=x^{3}+a x+b
$$

together with a special point \mathcal{O} called the point in infinity.

Example $y^{2}=4 x^{3}-4 x+4$

An abelian group over an elliptic curve

E - elliptic curve
($\mathrm{E},+$) - a group
neutral element: \mathcal{O}
inverse of $P=(x, y)$:

$$
P=(x,-y)
$$

"Addition"

Suppose $P, Q \in E \backslash\{\mathcal{O}\}$ where $P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$. Consider the following cases:

1. $x_{1} \neq x_{2}$
2. $x_{1}=x_{2}$ and $y_{1}=-y_{2}$
3. $x_{1}=x_{2}$ and $y_{1}=y_{2}$

Case 1: $\boldsymbol{x}_{1} \neq \boldsymbol{X}_{2}$

$P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$

\mathbf{L} - line through \mathbf{P} and \mathbf{Q}

Fact
L intersects E in exactly one point $R=\left(x_{3}, y_{3}\right)$.
where:
$x_{3}=\lambda^{2}-x_{1}-x_{2}$
$y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1}$
and
$\lambda=\left(y_{2}-y_{1}\right) /\left(x_{2}-x_{1}\right)$

Case 2:

$x_{1}=x_{2}$ and $y_{1}=-y_{2}$

$$
P=\left(x_{1}, y_{1}\right) \text { and } Q=\left(x_{2}, y_{2}\right)
$$

$$
P+Q=\mathcal{O}
$$

Case 3:

$x_{1}=x_{2}$ and $y_{1}=y_{2}$

$P=\left(x_{1}, y_{1}\right)$ and $Q=\left(x_{2}, y_{2}\right)$

L - line tangent to E at point \boldsymbol{R}

Fact
L intersects E in exactly one point $R=\left(x_{3}, y_{3}\right)$.
where:

$$
\begin{aligned}
& x_{3}=\lambda^{2}-x_{1}-x_{2} \\
& y_{3}=\lambda\left(x_{1}-x_{3}\right)-y_{1} \\
& \text { and }
\end{aligned}
$$

$$
\lambda=\left(3 x_{1}^{2} y_{2}+a\right) /\left(2 y_{1}\right)
$$

How to prove that this is a group?

Easy to see:

- addition is closed on the set \mathbf{E}
- addition is commutative
- \mathcal{O} is an identity
- every point has an inverse

What remains is associativity (exercise).

How to use these groups in cryptography?

Instead of the reals use some finite field.

For example Z_{p}, where p is prime.

All the formulas remain the same!

Example

x	$x^{3}+x+6 \bmod 11$	quadratic residue?	y
0	6	no	
1	8	no	
2	5	yes	4,7
3	3	yes	5,6
4	8	no	
5	4	yes	2,9
6	8	no	
7	4	yes	2,9
8	9	yes	3,8
9	7	no	
10	4	yes	2,9

Hasse's Theorem

Let E be an elliptic curve defined over Z_{p} where $p>3$ is prime.

$$
p+1-2 \sqrt{p} \leq|E| \leq p+1+2 \sqrt{p}
$$

How to use the elliptic curves in cryptography?
(E,+) - elliptic curve

Sometimes ($\mathbf{E},+$) is cyclic or it contains a large cyclic subgroup ($\mathrm{E}^{\prime},+$).

There are examples of such ($\mathbf{E},+$) or ($\mathbf{E}^{\prime},+$) where the discrete-log problem is believed to be computationally hard!
©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation.

