
Lecture 5b

Message Authentication

31.10.18 version 1.0

Stefan Dziembowski
www.crypto.edu.pl/Dziembowski

University of Warsaw

http://www.crypto.edu.pl/Dziembowski

Secure communication

encryption authentication

private key private key
encryption

private key
authentication

public key public key
encryption

signatures

1

3

2

4

Plan

1. Introduction to Message Authentication
Codes (MACs).

2. Constructions of MACs from block
ciphers

4

Message Authentication

Integrity:

𝑴

interferes with the
transmission
(modifies the message, or
inserts a new one)

𝐀𝐥𝐢𝐜𝐞 𝐁𝐨𝐛

How can 𝐁𝐨𝐛 be sure that
𝑴 really comes from 𝐀𝐥𝐢𝐜𝐞?

5

Sometimes more important than
secrecy!

Alice Bank
transfer $𝟏𝟎𝟎𝟎 to Eve

transfer $𝟏𝟎𝟎𝟎 to Bob

Of course: usually we want both secrecy and integrity.

6

Idea:

1. Alice encrypts 𝒎 and sends 𝒄 = 𝐄𝐧𝐜(𝒌,𝒎) to Bob.
2. Bob computes 𝐃𝐞𝐜(𝒌,𝒎), and if it “makes sense” accepts it.

Hope: only Alice knows 𝒌, so nobody else can produce a valid
ciphertext.

Does encryption guarantee message integrity?

This doesn’t work!

Example: one-time pad.

transfer $𝟏𝟎𝟎𝟎 to 𝐁𝐨𝐛

key 𝒌

ciphertext 𝒄

plaintext 𝒎

xor

If Eve knows 𝒎 and 𝒄 then she can
calculate 𝒌 and produce a ciphertext

of any other message

What do we need?

A separate tool for authenticating messages.

This tool will be called

Message Authentication Codes
(MACs)

A MAC is a pair of algorithms
(𝐓𝐚𝐠, 𝐕𝐫𝐟𝐲)

“tagging” algorithm “verification algorithm”

Message Authentication Codes

𝐀𝐥𝐢𝐜𝐞 Bob

(𝒎, 𝒕 = 𝐓𝐚𝐠𝒌(𝒎))

Eve can see (𝒎, 𝒕 = 𝐓𝐚𝐠𝒌(𝒎))

She should not be able to compute a
valid tag 𝒕’ on any other message 𝒎’.

𝒌 𝒌

𝒎
checks if

𝐕𝐫𝐟𝐲𝒌 𝒎, 𝒕 ∈ {𝐲𝐞𝐬, 𝐧𝐨}

𝒌 is chosen randomly
from some set K

9

Message authentication – multiple messages

𝐀𝐥𝐢𝐜𝐞 Bob

(𝒎𝟏, 𝒕𝟏 = 𝐓𝐚𝐠𝒌(𝒎𝟏))

Eve should not be able to
compute a valid tag 𝒕’ on
any other message 𝒎’.

𝒌 𝒌

(𝒎𝟐, 𝒕𝟐 = 𝐓𝐚𝐠𝒌(𝒎𝟐))𝒎𝟐

𝒎𝟏

(𝒎𝒘, 𝒕𝒘 = 𝐓𝐚𝐠𝒌(𝒎𝒘))𝒎𝒘

.

A mathematical view
K – key space

M – plaintext space

T - set of tags

A Message Authentication Code (MAC) scheme is a pair (𝐓𝐚𝐠,
𝐕𝐫𝐟𝐲), where

 Tag: K × M → T is a tagging algorithm,
 Vrfy:K × M × T → {yes, no} is a verification algorithm.

We will sometimes write 𝐓𝐚𝐠𝒌(𝒎) and 𝐕𝐫𝐟𝐲𝒌(𝒎, 𝒕) instead of
𝐓𝐚𝐠(𝒌,𝒎) and 𝐕𝐫𝐟𝐲(𝒌,𝒎, 𝒕).

Correctness
it always holds that:

𝐕𝐫𝐟𝐲𝒌(𝒎, 𝐓𝐚𝐠𝒌(𝒎)) = 𝐲𝐞𝐬.

Conventions

If Tag is deterministic, then Vrfy just
computes Tag and compares the result.

In this case we do not need to define Vrfy
explicitly.

If 𝐕𝐫𝐟𝐲𝒌(𝒎, 𝒕) = 𝐲𝐞𝐬 then we say that 𝒕 is a
valid tag on the message 𝒎.

12

We assume that:

1. The adversary is allowed to chose 𝒎𝟏, … ,𝒎𝒘 .

2. The goal of the adversary is to produce a valid tag on
some 𝒎’ such that 𝒎’ ∉ {𝒎𝟏, … ,𝒎𝒘} .

How to define security?

We need to specify:

1. how the messages 𝒎𝟏, … ,𝒎𝒘 are chosen,

2. what is the goal of the adversary.

Good tradition: be as pessimistic as possible!

13

security parameter
𝟏𝒏

selects a random 𝒌 ∈ {𝟎, 𝟏}𝒏

oracle

𝒎𝟏

𝒎𝒘

. . .

(𝒎𝟏, 𝒕 = 𝐓𝐚𝐠𝒌(𝒎𝟏))

(𝒎𝒘, 𝒕 = 𝐓𝐚𝐠𝒌(𝒎𝒘))

We say that the adversary breaks the MAC scheme at the end
she outputs (𝒎’, 𝒕’) such that
𝐕𝐫𝐟𝐲𝒌(𝒎’, 𝒕’) = 𝐲𝐞𝐬

and
𝒎’ ∉ {𝒎𝟏, … ,𝒎𝒘}

adversary

14

The security definition

We say that (𝐓𝐚𝐠, 𝐕𝐫𝐟𝐲) is secure if

∀
polynomial-time

adversary A

P(A breaks it) is negligible (in n)

Aren’t we too paranoid?

Maybe it would be enough to require that:

the adversary succeds only if he forges a message that
“makes sense”.

(e.g.: forging a message that consists of random noise should
not count)

Bad idea:

• hard to define,

• is application-dependent.

16

Warning: MACs do not offer protection against
the “replay attacks”.

𝐀𝐥𝐢𝐜𝐞 𝐁𝐨𝐛

(𝒎, 𝒕)

Since Vrfy is stateless there is
no way to detect that (𝒎, 𝒕) is

not fresh!

This problem has to be solved by the higher-level application
(methods: time-stamping, nonces...).

17

Constructing a MAC

1. There exist MACs that are secure even if the adversary is
infinitely-powerful.
These constructions are not practical.

2. MACs can be constructed from the block-ciphers.
We will now discuss to constructions:
• simple (and not practical),

• a little bit more complicated (and practical) – a CBC-MAC

1. MACs can also be constructed from the hash functions
(NMAC, HMAC).

Plan

1. Introduction to Message Authentication
Codes (MACs).

2. Constructions of MACs from block
ciphers

19

A simple construction from a block cipher

Let
𝑭 ∶ {𝟎, 𝟏}𝒏 × {𝟎, 𝟏}𝒏 → {𝟎, 𝟏}𝒏

be a block cipher (a PRF).

We can now define a MAC scheme that
works only for messages 𝒎 ∈ {𝟎, 𝟏}𝒏 as
follows:

𝐓𝐚𝐠(𝒌,𝒎) = 𝑭(𝒌,𝒎)

It can be proven that it is a secure MAC.

How to generalize it to longer messages?

𝑭𝒌𝒌

𝒎

𝑭(𝒌,𝒎)

20

Idea 1

𝑭𝒌

𝒎𝟏

𝑭(𝒌,𝒎𝟏)

𝑭𝒌

𝒎𝒅

𝑭(𝒌,𝒎𝒅)

. . .

• divide the message in blocks 𝒎𝟏, … ,𝒎𝒅
• and authenticate each block separately

This doesn’t work!

21

𝒕 = 𝐓𝐚𝐠𝒌(𝒎):

𝒎:

𝒕’ = 𝐩𝐞𝐫𝐦(𝒕):

𝒎’ = 𝐩𝐞𝐫𝐦(𝒎):

perm

Then t’ is a valid tag on 𝒎’.

What goes wrong?

22

Idea 2

𝑭𝒌

𝒎𝟏

𝑭(𝒌, 𝒙𝟏)

𝑭𝒌

𝒎𝒅

𝑭(𝒌, 𝒙𝒅)

. . .

Add a counter to each block.

This doesn’t work either!

𝟏 𝒅

𝒙𝟏 𝒙𝒅

𝒙𝒊
𝒎:

𝒕 = 𝐓𝐚𝐠𝒌(𝒎):

𝒎’ = a prefix of 𝒎:

𝒕’ = a prefix of 𝒕:

Then 𝒕’ is a valid tag on 𝒎’.

𝒎𝒊𝒊

Idea 3

𝑭𝒌

𝒎𝟏

𝑭(𝒌, 𝒙𝟏)

𝑭𝒌

𝒎𝒅

𝑭(𝒌, 𝒙𝒅)

. . .

Add ℓ:= |𝒎| to each block

This doesn’t work either!

𝟏 𝒅ℓ ℓ

𝒙𝟏 𝒙𝒅

25

What goes wrong?

𝒙𝒊

𝒎:

𝒕 = 𝐓𝐚𝐠𝒌(𝒎):

𝒎’:

𝒎’’ = first half from 𝒎 || second half from 𝒎’

𝒕’’ = first half from 𝒕 || second half from 𝒕’

Then 𝒕’’ is a valid tag on 𝒎’’.

𝒎𝟏𝟏ℓ

𝒕’ = 𝐓𝐚𝐠𝒌(𝒎’):

26

Idea 4

𝑭𝒌

𝑭(𝒌, 𝒙𝟏)

𝑭𝒌

md

𝑭(𝒌, 𝒙𝒅)

. . .

Add a fresh random value to each block!

This works!

dl

𝒙𝟏 𝒙𝒅

rm11lr

27

𝑭𝒌

𝑭(𝒌, 𝒙𝟏)

𝒎

𝟏ℓ𝒓

𝑭𝒌

𝑭(𝒌, 𝒙𝟐)

𝒎𝟐𝟐𝒓

𝑭𝒌

𝑭(𝒌, 𝒙𝒅)

𝒎𝒅𝒅r

𝒎𝟏 𝒎𝟐 𝒎𝒅
. . .

. . .

. . .

𝒎𝟏

ℓ

ℓℓ

𝒙𝟏 𝒙𝟐 𝒙𝒅

|𝒎𝒊| = 𝒏/𝟒

𝒓 is chosen randomly

𝒓

𝐓𝐚𝐠𝒌(𝒎)

𝟎𝟎𝟎

𝒏 – block length

pad with zeroes if needed

Proof idea:

• Suppose it is not a secure MAC.
• Let 𝑨 be an adversary that breaks it with a non-negligible

probability.
• We construct a distinguisher 𝑫 that distinguishes 𝑭 from a

random permutation.

This construction can be proven secure

Theorem

Assuming that

𝑭 ∶ {𝟎, 𝟏}𝒏 × {𝟎, 𝟏}𝒏 → {𝟎, 𝟏}𝒏 is a pseudorandom
permutation

the construction from the previous slide is a secure MAC.

A new member of “Minicrypt”

computationally-secure
MACs exist

PRPs/PRFs
exist

one-way functions
exist

this we already knew

this we have just
shown

this can be proven

30

Problem:

The tag is 4 times longer than the message...

Our construction is not practical

We can do much better!

31

CBC-MAC

𝒎

𝒎𝟏 𝒎𝟐 𝒎𝟑 𝒎𝒅
. . .

pad with zeroes if needed

𝟎𝟎𝟎𝟎

|𝒎|

𝑭𝒌 𝑭𝒌 𝑭𝒌 𝑭𝒌 𝑭𝒌

T𝐚𝐠𝒌(𝒎)

𝑭 ∶ {𝟎, 𝟏}𝒏 × {𝟎, 𝟏}𝒏 → {𝟎, 𝟏}𝒏 - a block cipher

Other variants exist!

32

𝒎𝟏 𝒎𝟐 𝒎𝟑 𝒎𝒅
. . . |𝒎|

𝑭𝒌 𝑭𝒌 𝑭𝒌 𝑭𝒌 𝑭𝒌

Why is this
needed?

Suppose we do not prepend |𝒎|...

𝐓𝐚𝐠𝐤(𝒎)

33

𝒎𝟏

𝑭𝒌

𝒕𝟏 = 𝐓𝐚𝐠𝒌(𝒎
𝟏)

𝒎𝟐

𝑭𝒌

𝒕𝟐 = 𝐓𝐚𝐠𝒌(𝒎
𝟐)

𝒎𝟏 𝒎𝟐⊕ 𝒕𝟏

𝑭𝒌 𝑭𝒌

𝒕’ = 𝐓𝐚𝐠𝒌(𝒎’)

𝒎’

𝒕’ = 𝒕𝟐
𝒕𝟏

the adversary
chooses:

now she can
compute:

𝒎𝟐

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or
all of this material is currently granted without fee provided that copies are made
only for personal or classroom use, are not distributed for profit or commercial
advantage, and that new copies bear this notice and the full citation.

