Lecture 5b Message Authentication

Stefan Dziembowski

www.crypto.edu.pl/Dziembowski

University of Warsaw

version 1.0

Secure communication

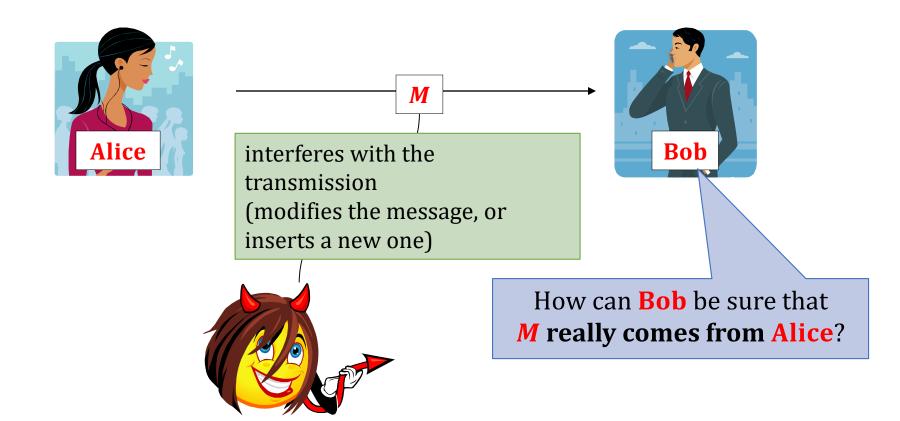
	encryption	authentication	
private key	1 private key encryption	2 private key authentication	
public key	3 public key encryption	4 signatures	

Plan

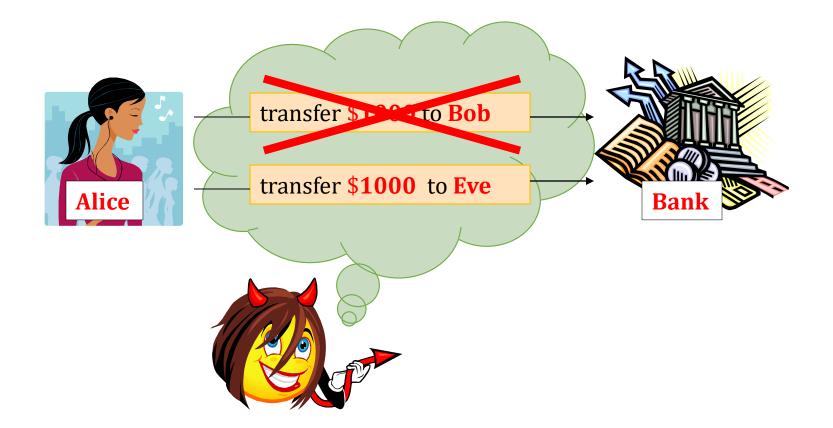
2. Constructions of MACs from block ciphers

Message Authentication

Integrity:



Sometimes more important than secrecy!

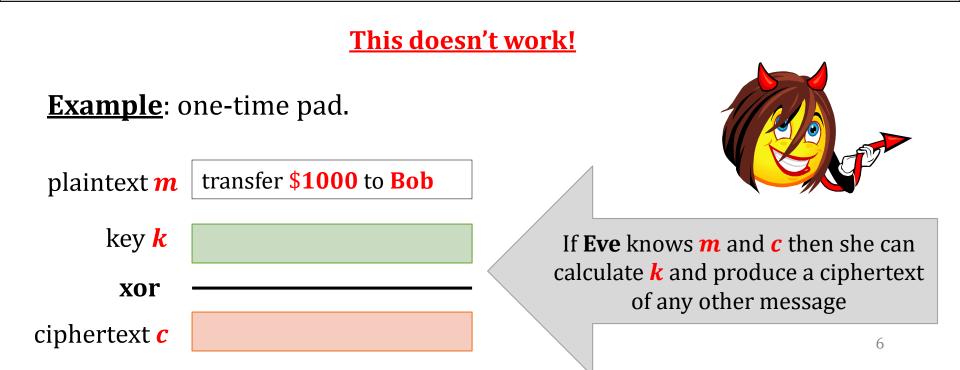


Of course: usually we want both **secrecy** and **integrity**.

Idea:

- 1. Alice encrypts *m* and sends c = Enc(k, m) to Bob.
- 2. **Bob** computes **Dec**(*k*, *m*), and if it "*makes sense*" **accepts it**.

<u>**Hope</u>**: only <u>Alice</u> knows *k*, so nobody else can produce a valid ciphertext.</u>



What do we need?

A separate tool for **authenticating messages**.

This tool will be called Message Authentication Codes (MACs)

A MAC is a pair of algorithms (Tag, Vrfy)

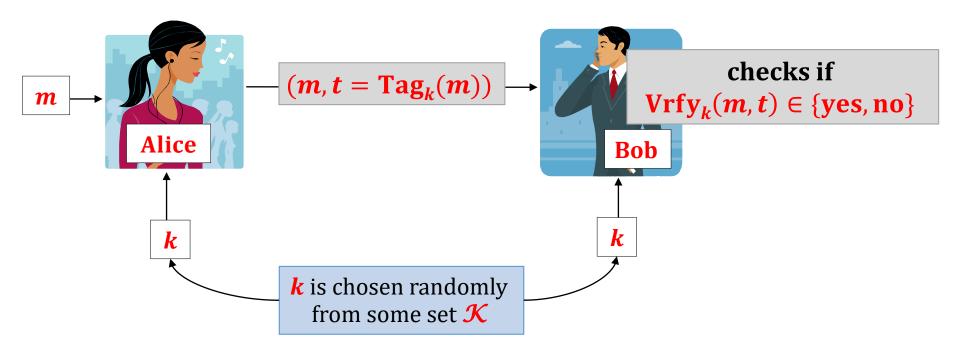
"tagging" algorithm

"verification algorithm"

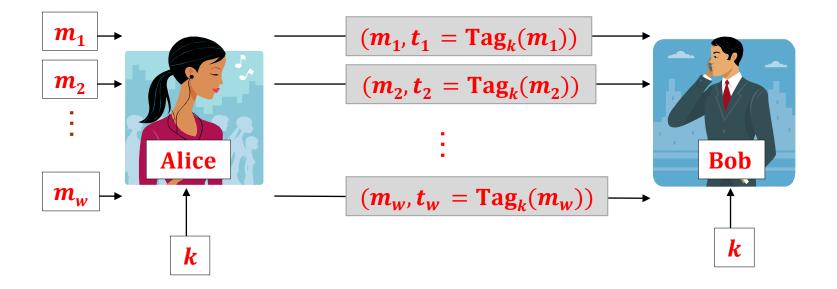
Message Authentication Codes

Eve can see $(m, t = \text{Tag}_k(m))$

She should not be able to compute a valid tag *t*' on any other message *m*'.



Message authentication – multiple messages



Eve should not be able to compute a valid tag *t*' on any other message *m*'.

A mathematical view

 \mathcal{K} – key space \mathcal{M} – plaintext space \mathcal{T} - set of tags

A Message Authentication Code (MAC) scheme is a pair (Tag, Vrfy), where

- Tag: $\mathcal{K} \times \mathcal{M} \to \mathcal{T}$ is a **tagging** algorithm,
- Vrfy: $\mathcal{K} \times \mathcal{M} \times \mathcal{T} \rightarrow \{$ yes, no $\}$ is a verification algorithm.

We will sometimes write $Tag_k(m)$ and $Vrfy_k(m, t)$ instead of Tag(k, m) and Vrfy(k, m, t).

Correctness

it always holds that:

 $\operatorname{Vrfy}_k(m, \operatorname{Tag}_k(m)) = \operatorname{yes}.$

Conventions

If $Vrfy_k(m, t) = yes$ then we say that t is a valid tag on the message m.

If **Tag** is **deterministic**, then **Vrfy** just computes **Tag** and compares the result.

In this case we do not need to define **Vrfy** explicitly.

How to define security?

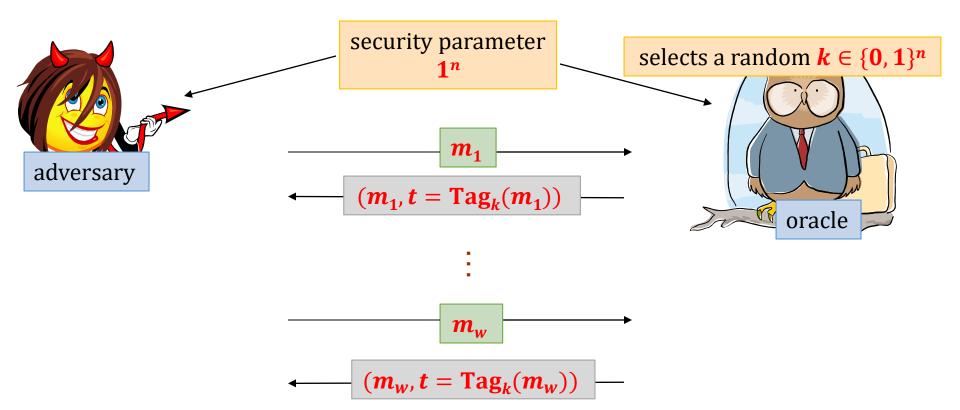
We need to specify:

- 1. how the messages m_1, \ldots, m_w are chosen,
- 2. what is the goal of the adversary.

Good tradition: be as pessimistic as possible!

We assume that:

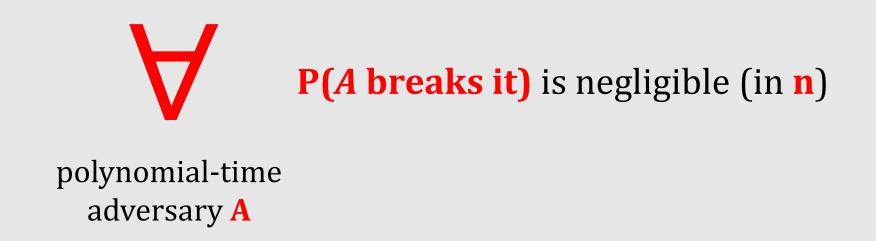
- 1. The adversary is allowed to chose m_1, \ldots, m_w .
- 2. The goal of the adversary is to produce a valid tag on **some** m' such that $m' \notin \{m_1, \dots, m_w\}$.



We say that the adversary **breaks the MAC scheme** at the end **she outputs** (m', t') such that $Vrfy_k(m', t') = yes$ and $m' \notin \{m_1, \dots, m_w\}$

The security definition

We say that (Tag, Vrfy) is secure if



Aren't we too paranoid?

Maybe it would be enough to require that:

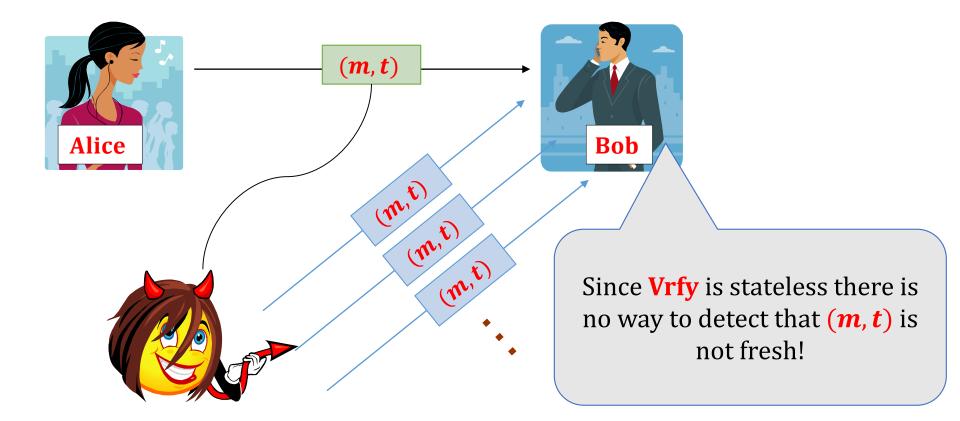
the adversary succeds only if he forges a message that *"makes sense"*.

(e.g.: forging a message that consists of **random noise** should not count)

Bad idea:

- hard to define,
- is application-dependent.

Warning: MACs do not offer protection against the "replay attacks".



This problem has to be solved by the higher-level application (methods: **time-stamping**, **nonces**...).

Constructing a MAC

- There exist MACs that are secure even if the adversary is infinitely-powerful. These constructions are not practical.
- 2. MACs can be constructed from the block-ciphers. We will now discuss to constructions:
 - simple (and not practical),
 - a little bit more complicated (and practical) a CBC-MAC
- 1. MACs can also be constructed from the hash functions (NMAC, HMAC).

Plan

- 1. Introduction to Message Authentication Codes (MACs).
- 2. Constructions of MACs from block ciphers

A simple construction from a block cipher


```
F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n
```

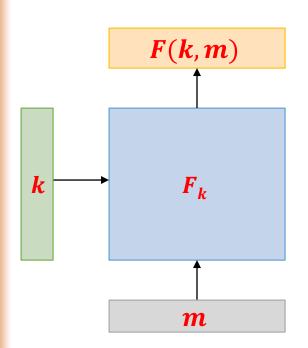
```
be a block cipher (a PRF).
```

```
We can now define a MAC scheme that works only for messages m \in \{0, 1\}^n as follows:
```

Tag(k,m) = F(k,m)

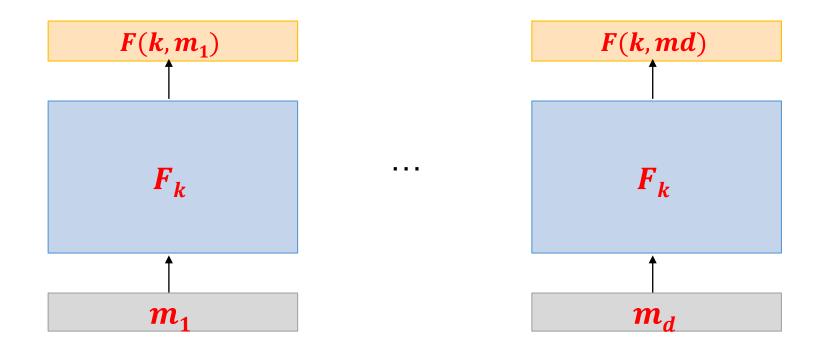
It can be proven that it is a secure **MAC**.

How to generalize it to longer messages?



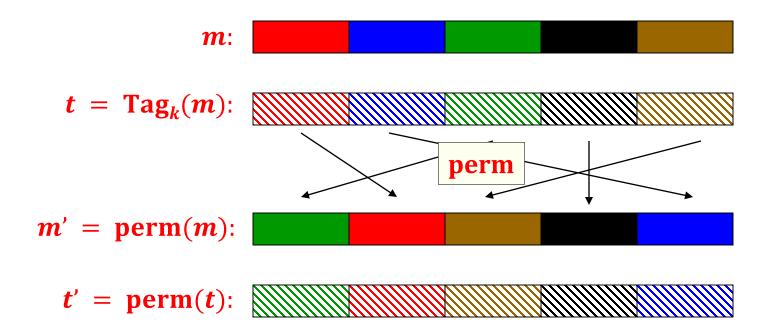
Idea 1

- divide the message in blocks m_1, \dots, md
- and authenticate each block separately



This doesn't work!

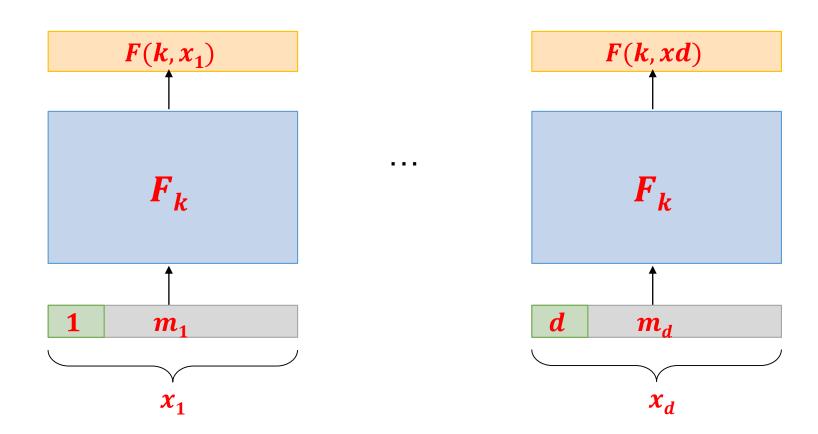
What goes wrong?



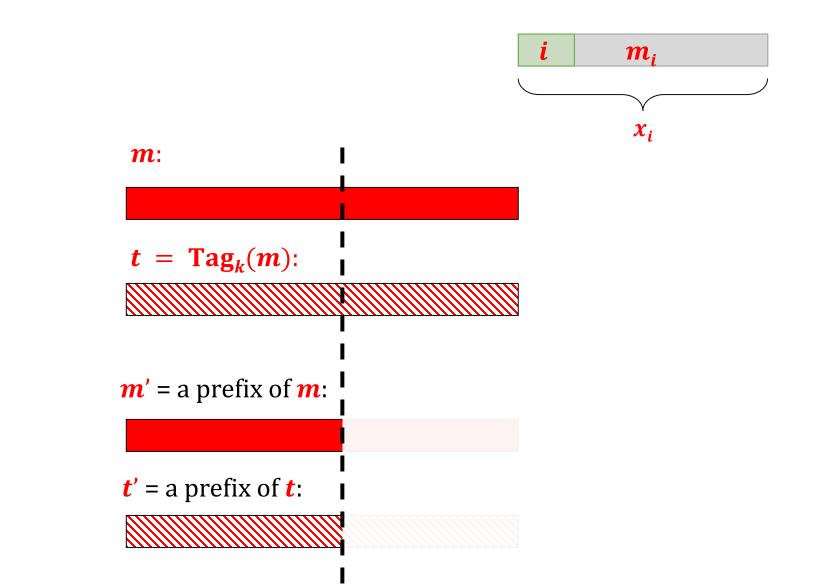
Then **t'** is a valid tag on **m'**.

Idea 2

Add a counter to each block.



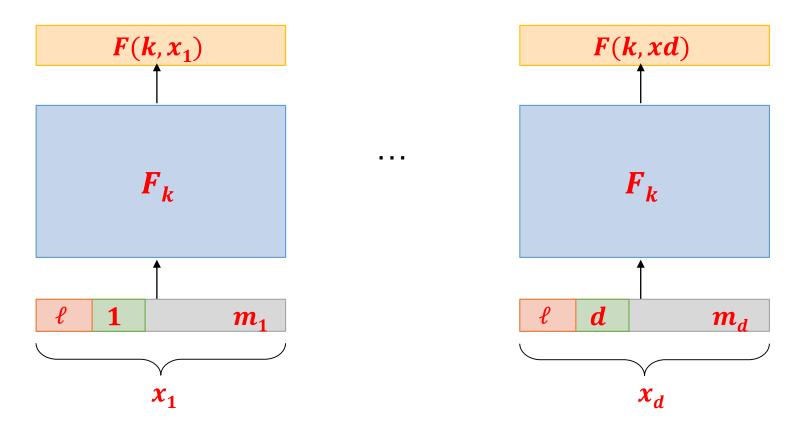
This doesn't work either!



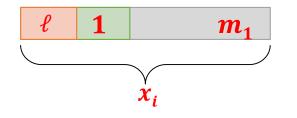
Then *t*' is a valid tag on *m*'.

Idea 3

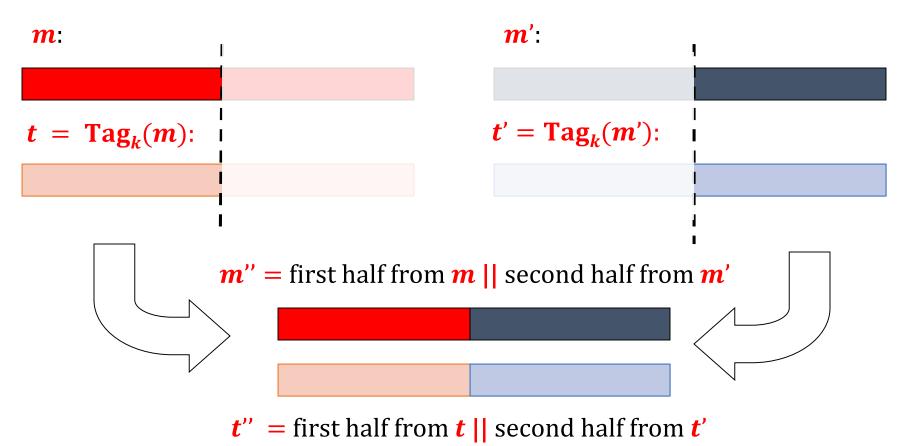
Add $\ell := |m|$ to each block



This doesn't work either!



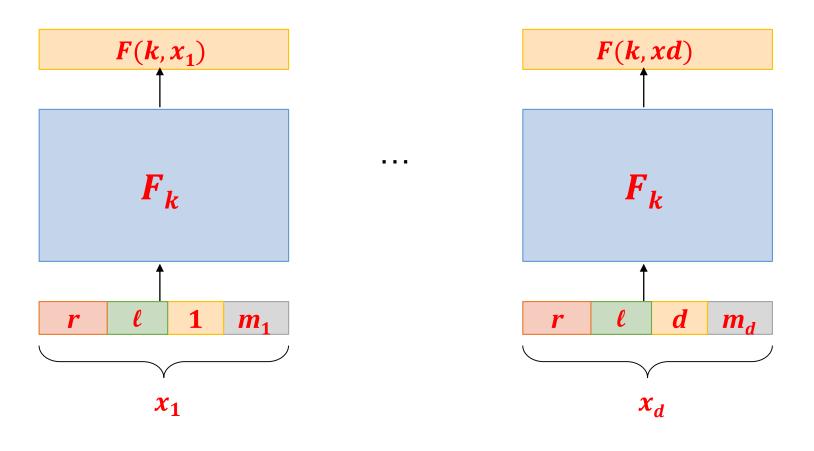
What goes wrong?



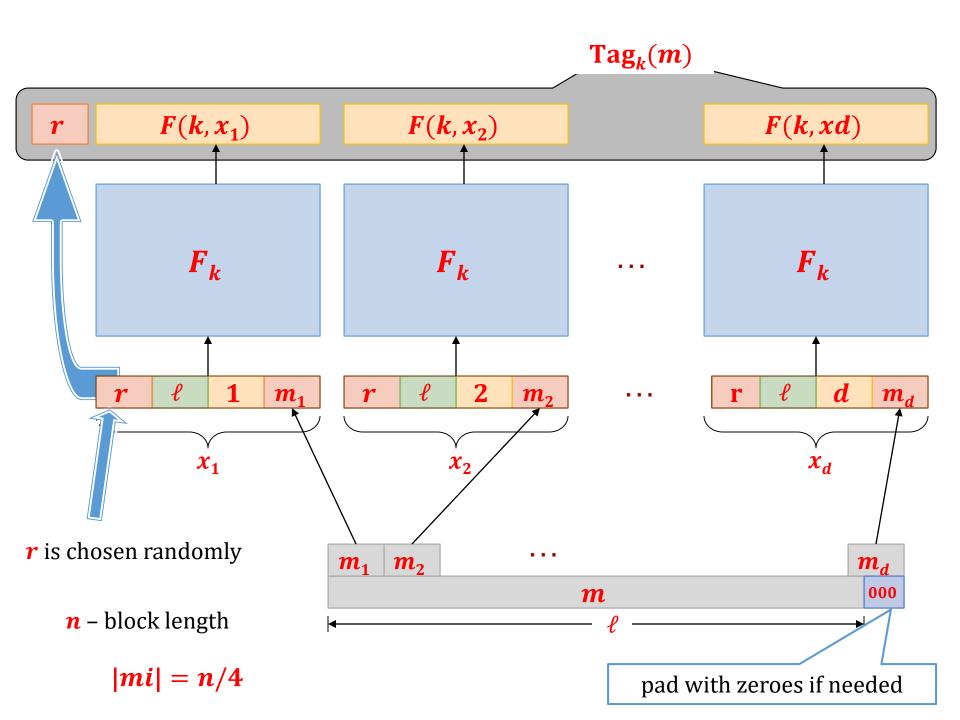
Then *t*" is a valid tag on *m*".

Idea 4

Add a fresh random value to each block!



This works!



This construction can be proven secure

Theorem

Assuming that

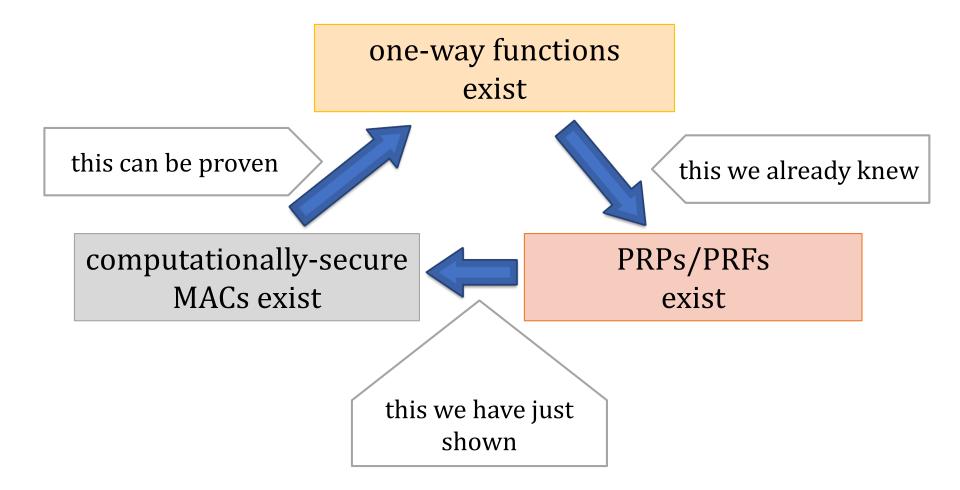
 $F: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ is a pseudorandom permutation

the construction from the previous slide is a secure MAC.

Proof idea:

- Suppose it is **<u>not</u>** a secure **MAC**.
- Let *A* be an adversary that breaks it with a non-negligible probability.
- We construct a distinguisher **D** that distinguishes **F** from a random permutation.

A new member of "Minicrypt"



Our construction is not practical

Problem:

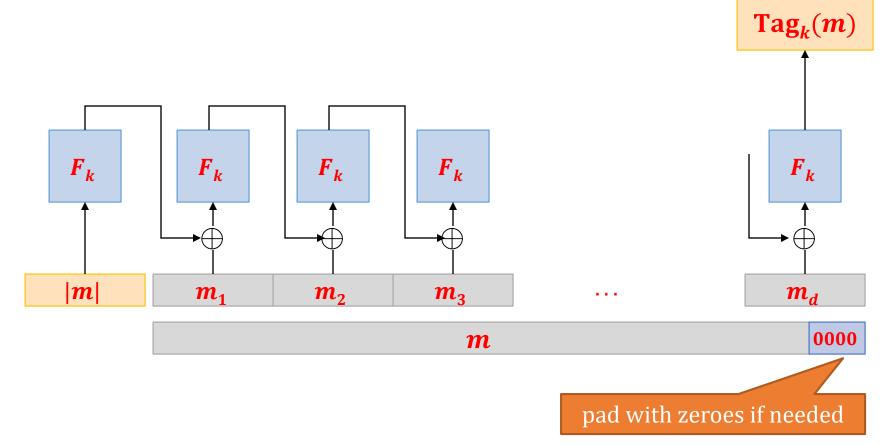
The tag is **4 times longer** than the message...

We can do much better!

31

CBC-MAC

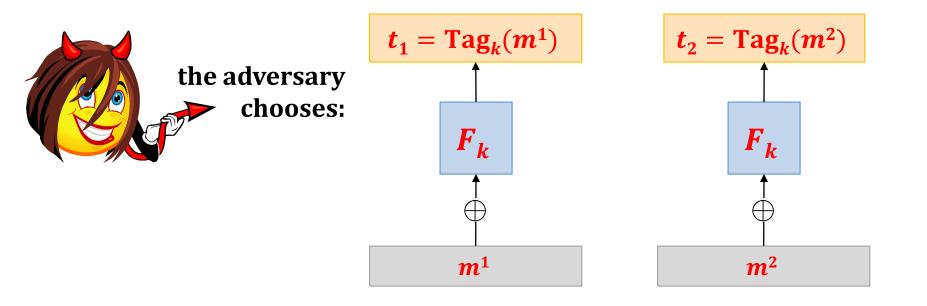
 $F : \{0, 1\}^n \times \{0, 1\}^n \to \{0, 1\}^n$ - a block cipher

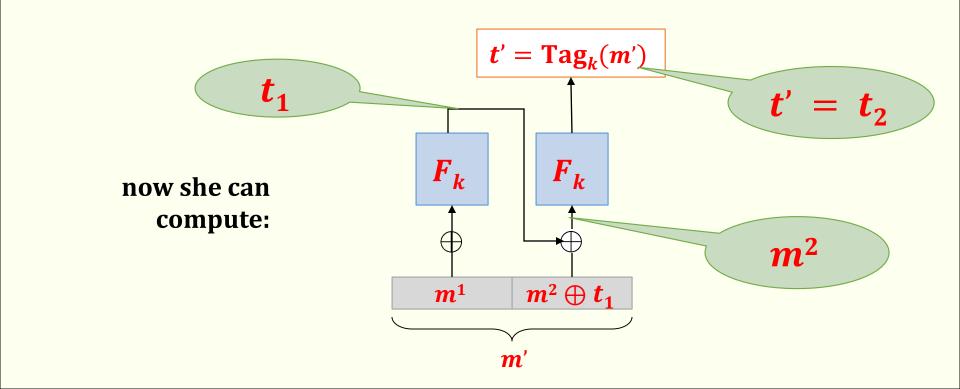


Other variants exist!



Suppose we do not prepend *m*...





©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.