
Lecture 8

Public-Key Encryption I

21.11.18 version 1.1

Stefan Dziembowski
www.crypto.edu.pl/Dziembowski

University of Warsaw

http://www.crypto.edu.pl/Dziembowski

Plan

1. Problems with the “handbook RSA”
2. Definition of the CPA security
3. Constructions of CPA-secure RSA

encryption schemes
1. theoretical
2. practical

4. The hybrid encryption and the KEM/DEM
paradigm

5. Definition of the CCA security
6. Constructions of CCA-secure symmetric

encryption
7. Constructions of CCA-secure RSA

encryption schemes

“Handbook RSA” encryption

Handbook RSA encryption scheme:

messages and ciphertexts: 𝒁𝑵

• 𝐄𝐧𝐜𝑵,𝒆 𝒎 = 𝒎𝒆𝐦𝐨𝐝𝑵

• 𝐃𝐞𝐜𝑵,𝒅 𝒄 = 𝒄𝒅 𝐦𝐨𝐝 𝑵

Take 𝒁𝑵
∗ (where 𝑵 = 𝒑𝒒 and 𝒑, 𝒒 are two distinct odd primes),

defined as follows:
𝒆 ← 𝒁𝝋 𝑵

∗

𝒅 = 𝒆−𝟏 𝐦𝐨𝐝𝝋(𝑵)
Let 𝒑𝒌 = (𝑵, 𝒆) and 𝒔𝒌 = (𝑵, 𝒅)

Is it secure?

Issues with the “handbook RSA”

1. It is deterministic.

2. It has some “algebraic properties”.

3. It is defined over 𝒁𝑵
∗ and not over 𝒁𝑵.

this is not really a problem (exercise)

Algebraic properties of RSA

1. RSA is homomorphic:
𝐑𝐒𝐀𝒆,𝑵 𝒎𝟎 · 𝒎𝟏 = 𝒎𝟎 · 𝒎𝟏

𝒆

why is it bad?

By checking if 𝒄 = 𝒄𝟎 ⋅ 𝒄𝟏 the adversary can check if
the messages 𝒎,𝒎𝟎,𝒎𝟏 corresponding to 𝒄, 𝒄𝟎, 𝒄𝟏
satisfy:

𝒎 = 𝒎𝟎 ⋅ 𝒎𝟏

2. The Jacobi symbol leaks.

= 𝒎𝟎
𝒆 ⋅ 𝒎𝟏

𝒆

= 𝐑𝐒𝐀𝒆,𝑵 𝒎𝟏 ⋅ 𝐑𝐒𝐀𝒆,𝑵 𝒎𝟐

Jacobi Symbol (from the last lecture)

𝐐𝐑𝒑

𝐐𝐑𝒒

𝐦𝐨𝐝 𝒒

𝐦𝐨𝐝 𝒑

𝐐𝐑𝑵

for 𝑵 = 𝒑𝒒 define 𝑱𝑵(𝒙): = 𝑱𝒑(𝒙) · 𝑱𝒒(𝒙)

+𝟏 if 𝒙 ∈ 𝐐𝐑𝒑for any prime 𝒑 define 𝑱𝒑(𝒙) ∶= −𝟏 otherwise

+1 -1

-1 +1

𝑱𝑵(𝒙) ∶=

𝒁𝑵
+: = {𝒙 ∈ 𝒁𝑵

∗ : 𝑱𝑵(𝒙) = +𝟏}

Jacobi symbol can be computed efficiently!
(even in 𝒑 and 𝒒 are unknown)

It is a subgroup of 𝒁𝑵
∗

Fact: the RSA function “preserves” the
Jacobi symbol

𝑱𝑵(𝒙) = 𝑱𝑵(𝒙
𝒆𝐦𝐨𝐝 𝑵)

𝑵 = 𝒑𝒒 - RSA modulus

𝒆 is such that 𝒆 ⊥ 𝝋(𝑵)

Actually, something even stronger holds:

𝐑𝐒𝐀𝑵,𝒆 is a permutation on each “quarter” of 𝒁𝑵
∗

In other words:
• 𝒎𝐦𝐨𝐝 𝒑 ∈ 𝐐𝐑𝒑 iff 𝒎𝒆𝐦𝐨𝐝 𝒑 ∈ 𝐐𝐑𝒑

• 𝒎𝐦𝐨𝐝 𝒒 ∈ 𝐐𝐑𝒒 iff 𝒎𝒆𝐦𝐨𝐝 𝒒 ∈ 𝐐𝐑𝒒

𝐐𝐑𝒑 𝐐𝐑𝒑

𝐐𝐑𝒑

Example 𝒁𝟑𝟓
∗

1 2 4 3 5 6
1 1 16 11 31 26 6

4 29 9 4 24 19 34
2 22 2 32 17 12 27

3 8 23 18 3 33 13

QR7

QR5 1 4 2 5 3 6
1 1 11 16 26 31 6

4 29 4 9 19 24 34
3 8 18 23 33 3 13

2 22 32 2 12 17 27

We calculate 𝐑𝐒𝐀𝟐𝟑,𝟑𝟓(𝒎) = 𝒎𝟐𝟑𝐦𝐨𝐝 𝟑𝟓

mod 7

m
o

d
 5

How to prove it?

By the CRT and by the fact that 𝒑 and 𝒒 are
symmetric it is enough to show that

𝒎 is a QRp

iff

𝒎𝒆 is a QRp

Fact

Proof:

Let 𝒈 be the generator of 𝒁𝒑
∗ . Let 𝒚 be such that 𝒎 = 𝒈𝒚.

Recall that 𝒙 is a 𝐐𝐑𝒑 iff 𝒙 is an even power of 𝒈

We have that

𝒎𝒆𝐦𝐨𝐝 𝒑 is a 𝐐𝐑𝒑

iff

(𝒈𝒚)𝒆𝐦𝐨𝐝 𝒑 is an even power of 𝒈

iff
𝒈𝒚𝒆 𝐦𝐨𝐝 (𝒑−𝟏) is an even power of 𝒈

iff
𝒈𝒚𝐦𝐨𝐝 𝒑 is an even power of 𝒈.

QED

remember that 𝒑
and 𝒆 are odd

For an odd 𝒆:
𝒎𝒆𝐦𝐨𝐝 𝒑 is a 𝐐𝐑𝒑

iff
𝒎𝐦𝐨𝐝 𝒑 is a 𝐐𝐑𝒑

= 𝒎𝐦𝐨𝐝 𝒑

Conclusion

The Jacobi symbol “leaks”, i.e.:

from 𝒄

one can compute 𝑱𝑵(𝐃𝐞𝐜𝑵,𝒅(𝒄))

(without knowing the factorization of 𝑵)

Is it a big problem?

Depends on the application...

1. Provide a formal security definition of public key
encryption.

2. Modify RSA so that it is secure according to this
definition.

Plan for today

Plan

1. Problems with the “handbook RSA”
2. Definition of the CPA security
3. Constructions of CPA-secure RSA

encryption schemes
1. theoretical
2. practical

4. The hybrid encryption and the KEM/DEM
paradigm

5. Definition of the CCA security
6. Constructions of CCA-secure symmetric

encryption
7. Constructions of CCA-secure RSA

encryption schemes

A mathematical view

A public-key encryption (PKE) scheme is a triple (Gen, Enc, Dec) of
poly-time algorithms, where

 Gen is a key-generation randomized algorithm that takes as input
a security parameter 𝟏𝒏 and outputs a key pair 𝒑𝒌, 𝒔𝒌 ∈
𝟎, 𝟏 ∗ 𝟐 .

 Enc is an encryption algorithm that takes as input the public key
pk and a message m (from some set that may depend on 𝒑𝒌), and
outputs a ciphertext 𝒄,

 Dec is a decryption algorithm that takes as input the private key
𝒔𝒌 and the ciphertext 𝒄, and outputs a message 𝒎’ ∈ 𝟎, 𝟏 ∗ ∪ {⊥}.

We will sometimes write 𝐄𝐧𝐜𝒑𝒌(𝒎) and 𝐃𝐞𝐜𝒔𝒌(𝒄) instead of
𝐄𝐧𝐜 𝒑𝒌,𝒎 and 𝐃𝐞𝐜(𝒔𝒌, 𝒄).

Pictorially

security
parameter 𝟏𝒏

𝐆𝐞𝐧 (𝒑𝒌, 𝒔𝒌)

public key secret key

𝐄𝐧𝐜𝒑𝒌

𝒎

𝒑𝒌

𝐄𝐧𝐜𝒑𝒌(𝒎)

𝐃𝐞𝐜𝒑𝒌

𝒄

𝒔𝒌

𝐃𝐞𝐜𝒔𝒌(𝒄)

Correctness

We will require that it always holds that

𝑷(𝐃𝐞𝐜𝒔𝒌(𝐄𝐧𝐜𝒑𝒌(𝒎)) ≠ 𝒎) is negligible in 𝒏

assuming that:
• 𝒑𝒌, 𝒔𝒌 ← 𝐆𝐞𝐧(𝟏𝒏)
• and 𝒎 is a “legal” plaintext for 𝒑𝒌.

The security definition

Remember the symmetric-key case?

We considered a chosen-plaintext attack.

How would it look in the case of the public-key
encryption?

CPA in the symmetric settings

oracle

chooses 𝒎𝟏
′

𝒎𝟏
′

c1 = Enc(k,𝒎𝟏
′)

has to guess b

chooses 𝒎𝒕
′ 𝒎𝒕

′

ct = Enc(k,𝒎𝒕
′)

m0,m1

c = Enc(k,mb)

chooses m0,m1

security parameter
1n 1. chooses random 𝒌

2. chooses random 𝒃 ← {𝟎, 𝟏}

. . .

challenge phase:

the interaction continues . . .

CPA in the asymmetric settings

oracle

chooses 𝒎𝟏
′

𝒎𝟏
′

c1 = Enc(pk,𝒎𝟏
′)

has to guess b

chooses 𝒎𝒕
′ 𝒎𝒕

′

ct = Enc(pk,𝒎𝒕
′)

m0,m1

c = Enc(pk,mb)

chooses m0,m1

security parameter
1n 1. generates 𝒑𝒌, 𝒔𝒌 ← 𝐆𝐞𝐧 𝟏𝒏

2. chooses random 𝒃 ← {𝟎, 𝟏}

. . .

challenge phase:

𝒑𝒌

the interaction continues . . .

This is not
needed.

Why?
Because if Eve
knows 𝒑𝒌 she
can compute

all these
ciphertexts

herself!

The game after simplifications

oracle

has to guess b

m0,m1

c = Enc(pk,mb)

chooses m0,m1

security parameter
1n 1. generates 𝒑𝒌, 𝒔𝒌 ← 𝐆𝐞𝐧 𝟏𝒏

2. chooses random 𝒃 ← {𝟎, 𝟏}

challenge phase:

𝒑𝒌

CPA-security

Security definition:

We say that (𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐃𝐞𝐜) has indistinguishable
encryptions under a chosen-plaintext attack (CPA) if any

randomized polynomial time adversary

guesses 𝒃 correctly

with probability at most 𝟏/𝟐 + 𝜺(𝒏) , where 𝜺 is negligible.

Alternative name: CPA-secure

Is the “handbook RSA” CPA-secure?

Not CPA-secure!
In fact: no deterministic encryption scheme is secure.

How can the adversary win the game?

1. he chooses any 𝒎𝟎,𝒎𝟏,

2. computes 𝒄𝟎 = 𝐄𝐧𝐜𝒑𝒌(𝒎𝟎) himself

3. compares the result.

Moral: encryption has to be randomized.

𝑵 = 𝒑𝒒, such that 𝒑 and 𝒒 are random primes,
and |𝒑| = |𝒒|
𝒆 – random such that 𝒆 ⊥ (𝒑 − 𝟏)(𝒒 − 𝟏)
𝒅 – random such that 𝒆𝒅 = 𝟏 (𝐦𝐨𝐝 (𝒑 − 𝟏)(𝒒 − 𝟏))
𝒑𝒌 ∶= (𝑵, 𝒆) 𝒔𝒌 ∶= (𝑵, 𝒅)

𝐄𝐧𝐜𝒑𝒌 (𝒎) = 𝒎𝒆 𝐦𝐨𝐝 𝑵.
𝐃𝐞𝐜𝒔𝒌 (𝒄) = 𝒄𝒅𝐦𝐨𝐝 𝑵.

Plan

1. Problems with the “handbook RSA”
2. Definition of the CPA security
3. Constructions of CPA-secure RSA

encryption schemes
1. theoretical
2. practical

4. The hybrid encryption and the KEM/DEM
paradigm

5. Definition of the CCA security
6. Constructions of CCA-secure symmetric

encryption
7. Constructions of CCA-secure RSA

encryption schemes

CPA-secure encryption from the
RSA assumption
We now show how to construct a provably secure
encryption scheme whose security is based on the
RSA assumption.

choose:
• 𝑵 = 𝒑𝒒 where 𝒑 and 𝒒 are random

primes such that |𝒑| = |𝒒| = 𝒌
• 𝒙 – a random element of 𝒁𝑵

∗ ,
• 𝒆 – a random element of 𝒁𝝋(𝑵)

∗

poly-time
adversary

(𝒙, 𝒆, 𝑵)

cannot compute 𝒚 such that 𝒚𝒆 = 𝒙

security parameter 𝟏𝒌

Outline of the construction

1. We prove that the least significant bit is a
hard to compute for RSA.

2. We show how to “encrypt using this bit”

RSA hardcore bit

Question: does RSA have a bit that is for sure well-hidden?

Answer: if RSA assumption doesn’t hold, then: no.

But what if it holds?

Answer: yes – the least significant bit of the argument is
hard to compute.

Notation

For an integer 𝒙 we will write
𝐋𝐒𝐁(𝒙)

to denote the least significant bit of 𝒙.

𝒙:

𝐋𝐒𝐁(𝒙)

In other words: 𝐋𝐒𝐁(𝒙) = 𝒙𝐦𝐨𝐝 𝟐

Fact (informally)

LSB is the “hardest bit to compute” in RSA.

(it is called a “hard-core bit”).

More precisely:

If you can compute LSB then you can invert RSA.

Note:

In some sense it is a “dual” predicate to Jacobi
symbol...

“LSB game”:

The adversary wins if

𝒃 is the least significant bit of 𝒚 = 𝐄𝐧𝐜𝒆,𝑵
−𝟏 (𝒙)

security parameter 𝟏𝒌

choose:
• 𝑵 = 𝒑𝒒 where 𝒑 and 𝒒 are random

primes such that |𝒑| = |𝒒| = 𝒌
• 𝒙 – a random element of 𝒁𝑵

∗ ,
• 𝒆 – a random element of 𝒁𝝋(𝑵)

∗

(𝒙, 𝒆, 𝑵)

outputs
𝒃

= 𝒙𝒅 𝐦𝐨𝐝𝑵

Theorem

In other words:

The least significant bit is a hard-core bit for RSA.

W. Alexi, B. Chor, O. Goldreich, and C.P. Schnorr
On the hardness of the least-signficant bits of the RSA and Rabin functions,
1984

Suppose the RSA assumption holds.
Then every poly-time adversary wins Game 2 with a
probability at most

𝟎. 𝟓 + 𝜺(𝒌)
where 𝜺 is negligible.

http://www.wisdom.weizmann.ac.il/~oded/p_acgs.html

Proof strategy

Suppose we are given a poly-time adversary

that wins the LSB game.

We construct a poly-time adversary

that breaks the RSA assumption.

For simplicity suppose
that this happens with

probability 1

(not: 𝟎. 𝟓 + 𝜺(𝒌))

Outline of the construction

(𝒙, 𝒆, 𝑵)
(𝒙𝟏, 𝒆, 𝑵)

𝒃𝟏 = 𝒙𝟏
𝒅 𝐦𝐨𝐝 𝑵

(𝒙𝒕, 𝒆, 𝑵)

𝒃𝒕 = 𝒙𝒕
𝒅 𝐦𝐨𝐝 𝑵

. . .

𝒚 = 𝒙𝒅 𝐦𝐨𝐝 𝐍

Observation

Adversary that can compute

LSB of 𝒙𝒅𝐦𝐨𝐝 𝑵.

can also be used to compute (for any 𝒄 ∈ 𝒁𝑵
∗)

LSB of 𝒄 · 𝒙𝒅𝐦𝐨𝐝 𝑵.

How?

(𝒄𝒆 ⋅ 𝒙, 𝒆, 𝑵)

outputs
𝒃’ = 𝐋𝐒𝐁((𝒄𝒆 · 𝒙)𝒅)
= 𝐋𝐒𝐁 (𝒄𝒆𝒅 · 𝒙𝒅)
= 𝐋𝐒𝐁 (𝒄 · 𝒙𝒅)

The method

The adversary will use to

compute:

• 𝐋𝐒𝐁(𝟐𝒚)

• 𝐋𝐒𝐁(𝟒𝒚)

• 𝐋𝐒𝐁(𝟖𝒚)

Why is it useful?

. . .

Let 𝒚 ≔ 𝒙𝒅𝐦𝐨𝐝 𝑵

Observation

1 . . . N-1

2 . . . 2N-2

1 . . . N-1 1 . . . N-1

𝒚

𝟐𝒚

𝟐𝒚𝐦𝐨𝐝 𝑵

= 𝟐𝒚 = 𝟐𝒚 − 𝑵

𝒚 ≤ (𝑵 − 𝟏)/𝟐 𝒚 > (𝑵 − 𝟏)/𝟐

Remember:
𝑵 = 𝒑𝒒 is odd

e
v

e
n

Moral: 𝒚 ∈ [𝟏,… , (𝑵 − 𝟏)/𝟐] iff 𝟐𝒚𝐦𝐨𝐝 𝑵 is even

o
d

d

1 . . . N-1

4 . . . 4N-4

𝒚

𝟒𝒚

𝟒𝒚
𝐦𝐨𝐝 𝑵

= 𝟒𝒚 = 𝟒𝒚 − 𝟑𝑵

(𝑵 − 𝟏)/𝟒

e
v

e
n

Moral: 𝒚 ∈ 𝟏,… ,
𝑵−𝟏

𝟒
∪

𝑵

𝟐
+ 𝟏,… ,

𝟑 𝑵−𝟏

𝟒
iff 𝟒𝒚𝐦𝐨𝐝 𝑵 is even

(𝑵 − 𝟏)/𝟐

𝟑(𝑵 − 𝟏)/𝟒

1 . . . N-1 1 . . . N-1 1 . . . N-1 1 . . . N-1

= 𝟒𝒚 − 𝑵 = 𝟒𝒚 – 𝟐𝑵

o
d

d

e
v

e
n

o
d

d

. . .

. . .

𝒚

𝟖𝒚

𝟖𝒚
𝐦𝐨𝐝 𝑵

=
𝟖𝒚

𝑵− 𝟏

𝟖

Moral: 𝒚 ∈ 𝟏,… ,
𝑵−𝟏

𝟖
∪

𝟐𝑵

𝟖
+ 𝟏,… ,

𝟑 𝑵−𝟏

𝟖

∪
𝟒𝑵

𝟖
+ 𝟏,… ,

𝟓 𝑵− 𝟏

𝟖
∪

𝟔𝑵

𝟖
+ 𝟏,… ,

𝟕 𝑵 − 𝟏

𝟖

𝟕 𝑵 − 𝟏

𝟖

. . .
=

𝟖𝒚 − 𝑵
=

𝟖𝒚 − 𝟐𝑵

e
v

e
n

o
d

d

e
v

e
n

o
d

d

e
v

e
n

o
d

d

e
v

e
n

o
d

d

=
𝟖𝒚 − 𝟕𝑵

. . .

iff 𝟖𝒚𝐦𝐨𝐝 𝑵 is even

So we can use bisection
𝟏 𝑵 − 𝟏

. . .

calculate
𝐋𝐒𝐁(𝟐𝒚)

calculate
𝐋𝐒𝐁(𝟖 · 𝒚)

calculate
𝐋𝐒𝐁(𝟏𝟔 · 𝒚)

calculate
𝐋𝐒𝐁(𝟒 · 𝒚)

QED

Why is it interesting?

We can encrypt one bit messages as follows:

(𝑵, 𝒆) – public key

(𝑵, 𝒅) – private key

𝐄𝐧𝐜𝒆,𝑵 𝒃 = 𝐋𝐒𝐁 𝒚 ⊕ 𝒃, 𝒚𝒆

(where 𝒚 ← 𝒁𝑵
∗)

𝐃𝐞𝐜𝒅,𝑵 𝒄, 𝒙 = 𝐋𝐒𝐁 𝒙𝒅 ⊕𝒄

This is secure under the RSA assumption

How to extend it to longer messages?

Encrypt bit-by-bit:

𝐄𝐧𝐜𝒆,𝑵 𝒎𝟏, … ,𝒎𝒌 =
(𝐋𝐒𝐁 𝒚𝟏 ⊕𝒎𝟏, … , 𝐋𝐒𝐁 𝒚𝒌 ⊕𝒎𝒌), (𝒚𝟏

𝒆 , … , 𝒚𝒌
𝒆)

where 𝒚𝟏, … , 𝒚𝒌 ← 𝒁𝑵
∗

𝐃𝐞𝐜𝒅,𝑵((𝒄𝟏, … , 𝒄𝒌), (𝒙𝟏, … , 𝒙𝒌)) =
𝐋𝐒𝐁(𝒙𝟏

𝒅) ⊕ 𝒄𝟏, … , 𝐋𝐒𝐁(𝒙𝒌
𝒅) ⊕ 𝒄𝒌

Lemma

Assume that the RSA assumption holds. Then the
encryption scheme from the previous slide is CPA-
secure.

Proof: exercise

Conclusion

Advantage:

Security of this scheme is implied by the RSA
assumption.

Disadvantage:

The ciphertext is much longer than the plaintext.

It is a rather theoretical construction!

the public-key
encryption scheme

that we just
constructed is secure

RSA assumption holds

Plan

1. Problems with the “handbook RSA”
2. Definition of the CPA security
3. Constructions of CPA-secure RSA

encryption schemes
1. theoretical
2. practical

4. The hybrid encryption and the KEM/DEM
paradigm

5. Definition of the CCA security
6. Constructions of CCA-secure symmetric

encryption
7. Constructions of CCA-secure RSA

encryption schemes

This has the following advantages:
• it makes the encryption non-deterministic
• it breaks the “algebraic properties” of

encryption.

Encoding (also called: “padding”)

Before encrypting a message we usually
encode it (adding some randomness).

How is it done in real-life?
PKCS #1: RSA Encryption Standard Version 1.5:

public-key: (𝑵, 𝒆)
𝒌 := length on 𝑵 in bytes.
𝑫 := length of the plaintext
requirement: 𝑫 ≤ 𝒌 − 𝟏𝟏.

𝐄𝐧𝐜 𝑵, 𝒆 ,𝒎 ∶= 𝒙𝒆𝐦𝐨𝐝 𝑵, where 𝒙 is equal to:

00000000 00000001 r 00000000 m

(𝒌 − 𝑫 − 𝟑) random
non-zero bytes

𝑫 bytes

𝒌 bytes

How to encrypt?

𝒎

𝐄𝐧𝐜𝒆,𝑵

𝐄𝐧𝐜𝐨𝐝𝐢𝐧𝐠(𝒎) ∶=

𝐄𝐧𝐜𝒆,𝑵(𝐄𝐧𝐜𝐨𝐝𝐢𝐧𝐠(𝒎))

00000000 00000001 r 00000000 m

How to decrypt?

De𝐜𝒅,𝑵

ciphertext 𝒚

check if the format agrees....

output
𝒎

00000000 00000001 r 00000000 m

if not then output ⊥, otherwise

Example

If the adversary can calculate the Jacobi symbol of

most probably it doesn’t help him in learning any
information about 𝒎...

00000000 00000001 r 00000000 m

Security of the PKCS #1: RSA Encryption
Standard Version 1.5 – security

It is believed to be CPA-secure.

(as we will later learn: it’s not “CCA-secure”)

Plan

1. Problems with the “handbook RSA”
2. Definition of the CPA security
3. Constructions of CPA-secure RSA

encryption schemes
1. theoretical
2. practical

4. The hybrid encryption and the KEM/DEM
paradigm

5. Definition of the CCA security
6. Constructions of CCA-secure symmetric

encryption
7. Constructions of CCA-secure RSA

encryption schemes

How to encrypt longer
messages?

Two options:

1. divide the message in blocks and encrypt
each block separately.

2. combine the public-key encryption with
the private-key encryption.

Encrypting block-by-block

𝑴

𝑩𝟏 … 𝑩𝒏

long message

𝑪𝟏 … 𝑪𝒏

𝐄𝐧𝐜𝒑𝒌 𝐄𝐧𝐜𝒑𝒌…

𝐃𝐞𝐜𝒔𝒌 𝐃𝐞𝐜𝒔𝒌…

𝑩𝟏 … 𝑩𝒏

note: this is
randomized,

so we don’t
have the same

problem as
with the ECB

mode

split into blocks

A more efficient solution:

hybrid encryption

A problem with this solution

It’s rather inefficient (the number of public-key
operations is proportional to |𝑴|)

Ingredients for the hybrid
encryption

• (𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐃𝐞𝐜)– a public key encryption scheme

• (𝐄𝐧𝐜′, 𝐃𝐞𝐜′)– a private key encryption scheme

Main idea:

Encrypt the symmetric key with a public-key encryption
scheme.

Key generation

The same as in the public-key scheme:

security
parameter 𝟏𝒏

𝐆𝐞𝐧 (𝒑𝒌, 𝒔𝒌)

public key secret key

How to encrypt?

𝐄𝐧𝐜𝒑𝒌 𝐄𝐧𝐜𝒌
′

𝒌 𝒎

𝒑𝒌

𝒄:= 𝐄𝐧𝐜𝒑𝒌(𝒌) 𝒄′ = 𝐄𝐧𝐜𝒌
′ 𝒎

ciphertext
𝒄, 𝒄′

How to decrypt?

𝐃𝐞𝐜𝒔𝒌 𝐃𝐞𝐜𝒌
′

𝒌

𝒎

𝒔𝒌

𝒄 𝒄′ ciphertext

decrypted
plaintext

A more direct method: the
KEM/DEM paradigm

DEM – Data Encapsulation Mechanism

KEM – Key Encapsulation Mechanism
consists of the following algorithms:

• key generation algorithm 𝐆𝐞𝐧 – as in PKE,

• encapsulation algorithm Encaps,

• decapsulation algorithm Decaps.

= private key encryption

KEM:

𝐄𝐧𝐜𝐚𝐩𝐬𝒑𝒌𝒑𝒌

security
parameter 𝟏𝒏

(𝒄, 𝒌)

“ciphertext”
symmetric key
𝒌 ∈ 𝟎, 𝟏 ℓ(𝒏)

𝐃𝐞𝐜𝐚𝐩𝐬𝒔𝒌𝒔𝒌

𝒄

𝒌

𝐆𝐞𝐧 (𝒑𝒌, 𝒔𝒌)

public key secret key

How to encrypt?

𝐆𝐞𝐧 – as in KEM

(𝐄𝐧𝐜′, 𝐃𝐞𝐜′) – DEM

𝐄𝐧𝐜𝐚𝐩𝐬𝒑𝒌 𝐄𝐧𝐜𝒌
′

𝒎

𝒑𝒌

𝒄 𝒄′ = 𝐄𝐧𝐜𝒌
′ 𝒎 ciphertext

𝒄

𝒌

𝒄′

How to decrypt?

𝐃𝐞𝐜𝐚𝐩𝐬𝒔𝒌 𝐃𝐞𝐜𝒌
′

𝒌

𝒎

𝒔𝒌

𝒄 𝒄′ ciphertext

One method to implement KEM

Take a public-key encryption scheme (𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐃𝐞𝐜).

Define 𝐊𝐄𝐌 as follows:

• 𝐆𝐞𝐧 is the same

• 𝐄𝐧𝐜𝐚𝐩𝐬𝒑𝒌 = generate a random symmetric key 𝒌

and output

𝐄𝐧𝐜𝒑𝒌 𝒌 , 𝒌

• 𝐃𝐞𝐜𝐚𝐩𝐬𝒔𝒌 = on input 𝒄 output 𝐃𝐞𝐜𝒔𝒌(𝒄)

Pictorially:

𝐄𝐧𝐜𝒑𝒌

random 𝒌

𝒑𝒌

𝐄𝐧𝐜𝒑𝒌 𝒌 , 𝒌

𝐄𝐧𝐜𝐚𝐩𝐬𝒑𝒌𝒑𝒌

𝒄, 𝒌

De𝐜𝒔𝒌

𝒄

𝒔𝒌

𝐃𝐞𝐜𝒔𝒌 𝒄

De𝐜𝐚𝐩𝐬𝒔𝒌𝒔𝒌

𝒌

𝒄

=

=

Note

In this case KEM/DEM method is simply equal to
the hybrid encryption.

However: there exist other, direct methods for key
encapsulation.

(they are more efficient)

Consequences of these
approaches

For longer messages the cost of encryption is
dominated by the cost of symmetric operations.

Hence: the public-key operations (amortized over
the length of the messages) are almost “for free”.

Plan

1. Problems with the “handbook RSA”
2. Definition of the CPA security
3. Constructions of CPA-secure RSA

encryption schemes
1. theoretical
2. practical

4. The hybrid encryption and the KEM/DEM
paradigm

5. Definition of the CCA security
6. Constructions of CCA-secure symmetric

encryption
7. Constructions of CCA-secure RSA

encryption schemes

Chosen-ciphertext attacks –
motivation
Remember the attack on the symmetric encryption based
on the error messages from the decryption oracle?

𝒄′ that depends on 𝒄

if 𝒄′ cannot be
decrypted then

send “error”

has a key 𝒌
𝒄

obtains some
information about 𝒄

Another scenario

𝒄

if 𝐃𝐞𝐜𝒔𝒌(𝒄) = “alarm”
then announce

“alarm” to everybody.

A more advanced example

𝒄′ that depends on 𝒄

𝒄

𝐃𝐞𝐜𝒔𝒌 𝒄 =

(𝒑𝒌, 𝒔𝒌)

Bob

From: Alice@gmail.com

To: Bob@gmail.com

<some text>

Eve

𝐃𝐞𝐜𝒔𝒌 𝒄′ =

From: Eve@gmail.com

To: Bob@gmail.com

<some text>

replies to Eve citing

<some text>

Note

CPA security does not imply that such attacks are
impossible.

We need a stronger security definition.

This will be called:

chosen-ciphertext security (CCA)

It can be defined both for the symmetric and
asymmetric case.

Decryption oracle

To define the CCA-security we consider a decryption oracle.

𝒔𝒌

𝒄𝟏

𝐃𝐞𝐜𝒔𝒌(𝒄𝟏)

. . .

𝒄𝟐

𝐃𝐞𝐜𝒔𝒌(𝒄𝟐)

𝒄𝒌

𝐃𝐞𝐜𝒔𝒌(𝒄𝒌)

convention:

𝐃𝐞𝐜𝒔𝒌 𝒄𝒊 ≔⊥
if 𝒄𝒊 cannot be

decrypted

we call such a
ciphertext
“invalid”

Decryption/encryption oracle

We assume that also CPA is allowed.

Two types of queries:

(𝒑𝒌, 𝒔𝒌)

Decrypt 𝒄𝒊

𝐃𝐞𝐜𝒔𝒌 𝒄𝒊

Encrypt 𝒎𝒊

𝐄𝐧𝐜𝒔𝒌 𝒎𝒊

this is called a CCA-attack

this will be used in the
symmetric case

CCA-security– the game in the
symmetric case

decryption/encryption
oracle

has to guess b

m0,m1

c = 𝐄𝐧𝐜𝒌(mb)

chooses m0,m1

security parameter
1n

1. generates 𝒌 ← 𝐆𝐞𝐧 𝟏𝒏

2. chooses random 𝒃 ← {𝟎, 𝟏}

challenge phase:

CCA-attack

CCA-attack

Here the adversary cannot
ask for decryption of 𝒄.

has to guess b

m0,m1

c = 𝐄𝐧𝐜𝒑𝒌(mb)

chooses m0,m1

1. generates 𝒑𝒌, 𝒔𝒌 ← 𝐆𝐞𝐧 𝟏𝒏

2. chooses random 𝒃 ← {𝟎, 𝟏}

challenge phase:

𝒑𝒌

CCA-attack

CCA-attack
𝒎𝟎, 𝒎𝟏have to be

legal for 𝒑𝒌

Here the adversary cannot
ask for decryption of 𝒄.

CCA-security– the game in the
asymmetric case

security parameter
1n

decryption oracle

CCA security

Security definition (in the asymmetric case):

We say that (𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐃𝐞𝐜) has indistinguishable
encryptions under a chosen-ciphertext attack (CCA) if any

randomized polynomial time adversary

guesses 𝒃 correctly

with probability at most 𝟏/𝟐 + 𝜺(𝒏) , where 𝜺 is negligible.

Alternative name:
CCA-secure

In the symmetric case: (𝐄𝐧𝐜, 𝐃𝐞𝐜)

Easy to see

CCA-security implies CPA security

(because the adversary in the “CCA game” is at
least as powerful as the one in the “CPA game”)

What about the implication in the other
direction?

CPA-security does not imply the CCA-security

Informally:

To win the game it is enough that Eve is computes some
𝒄′ such that 𝐃𝐞𝐜𝒌(𝒄′) is “related to” 𝐃𝐞𝐜𝒌(𝒄).
(Why? Because then she is allowed to ask for it.)

For example: it is possible for any stream cipher!

if 𝒄′ = 𝒄′ ⊕ (𝟏,… , 𝟏) then 𝐃𝐞𝐜𝒌 𝒄′ = 𝐃𝐞𝐜𝒌 𝒄 ⊕ (𝟏,… , 𝟏)

𝒎𝟎,𝒎𝟏

𝒄 = 𝐄𝐧𝐜(𝒌,𝒎𝒃)

CCA-attack Here Eve cannot ask for
decryption of 𝒄.

here ask about
the “related” 𝒄′

How to construct CCA-secure
schemes?

• in the symmetric case: easy

• in the asymmetric case: usually harder (also: in
this case the “CCA attacks” are more realistic).

Plan

1. Problems with the “handbook RSA”
2. Definition of the CPA security
3. Constructions of CPA-secure RSA

encryption schemes
1. theoretical
2. practical

4. The hybrid encryption and the KEM/DEM
paradigm

5. Definition of the CCA security
6. Constructions of CCA-secure symmetric

encryption
7. Constructions of CCA-secure RSA

encryption schemes

Symmetric case

Simplest method: authenticate every ciphertext with a MAC.

Ingredients:

• (𝐄𝐧𝐜, 𝐃𝐞𝐜) – a CPA-secure symmetric encryption scheme

• 𝐓𝐚𝐠, 𝐕𝐫𝐟𝐲 – a message authentication code that is
strongly secure.

A MAC is strongly secure if the adversary cannot produce a
valid tag 𝒕′ on a message 𝒎 even if he saw a valid pair (𝒎, 𝒕)

(where 𝒕 ≠ 𝒕)

The method from previous lectures

encrypt-then-authenticate:

key: a pair (𝒌𝟏, 𝒌𝟐)

• to encrypt 𝒎 compute 𝒄 ≔ 𝐄𝐧𝐜𝒌𝟏(𝒎) and 𝒕 ≔
𝐓𝐚𝐠𝒌𝟐(𝒄), and output (𝒄, 𝒕)

• to decrypt 𝒄, 𝒕 :

if 𝐕𝐫𝐟𝐲𝒌𝟐 𝒄, 𝒕 = 𝐧𝐨 then output ⊥
otherwise output 𝐃𝐞𝐜𝒌𝟏(𝒄)

Why is this secure?

m0,m1

c = 𝐄𝐧𝐜𝒌(mb)

chooses m0,m1

CCA-attack

CCA-attack

The adversary cannot “produce himself” a valid ciphertext.

The only decryption queries Decrypt 𝒄′ on which he doesn’t get ⊥ are such
that he received 𝒄′ from the oracle before.

But he already knows the decryptions of such 𝒄′s.

So: the CCA attack does not help him!

Plan

1. Problems with the “handbook RSA”
2. Definition of the CPA security
3. Constructions of CPA-secure RSA

encryption schemes
1. theoretical
2. practical

4. The hybrid encryption and the KEM/DEM
paradigm

5. Definition of the CCA security
6. Constructions of CCA-secure symmetric

encryption
7. Constructions of CCA-secure RSA

encryption schemes

Bleichenbacher [1998] showed a “practical” chosen
ciphertext attack on encoding proposed for the PKCS #1
v.2 standard.

[see also: Bleichenbacher, D., Kaliski B., Staddon J., "Recent results on PKCS #1: RSA
encryption standard", RSA Laboratories' bulletin #7,
ftp://ftp.rsasecurity.com/pub/pdfs/bulletn7.pdf]

PKCS #1 v.2 is not CCA-secre

Why is Blaichenbacher’s attack practical?

Because it assumes that the adversary can get only one bit of
information about the plaintext...

ftp://ftp.rsasecurity.com/pub/pdfs/bulletn7.pdf

Bleichenbacher’s attack – the scenario

𝒔𝒌 = (𝑵, 𝒅)

𝒄𝟏 computes

𝒙 = 𝒄𝟏
𝒅 𝐦𝐨𝐝 𝑵

and checks if 𝒙 is a
correct PKCS #1 v2
encoding

𝒑𝒌 = (𝑵, 𝒆)

yes/no

. . .

𝒄

Goal:
compute 𝒄𝒅𝐦𝐨𝐝 𝑵

Bleichenbacher [1998]:
There exists a successful attack that requires 𝒌 = 𝟐𝟐𝟎 questions
for |𝑵| = 𝟏𝟎𝟐𝟒.

𝒄𝒌

yes/no

How to construct CCA-secure
encryption scheme from RSA?

Observation: MACs don’t help (at least directly).

Because in the asymmetric case the parties don’t
share a key for a MAC.

𝑷𝟏

First attempt

Idea: take a symmetric-key CCA-secure scheme
(𝐄𝐧𝐜’, 𝐃𝐞𝐜’) and use it in the KEM/DEM method.

public key: (𝑵, 𝒆) private key: (𝑵, 𝒅)

𝐄𝐧𝐜((𝑵, 𝒆),𝒎) ∶= (𝒓𝒆 𝐦𝐨𝐝 𝑵, 𝐄𝐧𝐜’(𝒓,𝒎))

𝐃𝐞𝐜((𝑵, 𝒅), (𝒄𝟎, 𝒄𝟏)) ∶= 𝐃𝐞𝐜’(𝒄𝟎
𝒅 𝐦𝐨𝐝 𝑵, 𝒄𝟏)

𝒓 is random from 𝒁𝑵
∗

But is it secure?

It may be the case that

• RSA is hard to invert, but
• 𝟏𝟐𝟖 first bits are easy to compute...

𝐄𝐧𝐜((𝑵, 𝒆),𝒎) ∶= (𝒓𝒆 𝐦𝐨𝐝 𝑵, 𝐄𝐧𝐜’(𝒓,𝒎))

Problem

|𝑵| is normally much larger than the length of a key for
symmetric encryption.

Typically |𝑵| = 𝟏𝟎𝟐𝟒 and length of the symmetric key is 𝟏𝟐𝟖.

First idea: truncate.

𝒕 – length of the symmetric key
𝑯: 𝟎, 𝟏 ∗ → {𝟎, 𝟏}𝒕 – a hash function

𝐄𝐧𝐜((𝑵, 𝒆),𝒎) ∶= (𝒓𝒆𝐦𝐨𝐝 𝑵, 𝐄𝐧𝐜′(𝑯(𝒓),𝒎))

𝐃𝐞𝐜((𝑵, 𝒅), (𝒄𝟎, 𝒄𝟏)) ≔ 𝐃𝐞𝐜′ 𝑯 𝒄𝟎
𝒅𝐦𝐨𝐝 𝑵 , 𝒄𝟏

Idea: instead of truncating – hash!

But can we prove anything about it?

depends...

Remember the Random Oracle Model?

We have to assume that 𝑯 “outputs random values on different
inputs”.

This can be formalized by modeling 𝑯 as random oracle.

If we just assume that 𝑯 is collision-resistant we cannot prove
anything...

Which properties should 𝑯 have?

Random oracle model

hash functions ≈ random oracles

𝑯: 𝟎, 𝟏 ∗ → {𝟎, 𝟏}𝑳
a completely random

function

𝒙

𝑯(𝒙)

Security proof – the intuition

𝑯 – a hash function 𝐄𝐧𝐜((𝑵, 𝒆),𝒎) ∶= (𝒓𝒆 𝐦𝐨𝐝 𝑵, 𝐄𝐧𝐜’(𝑯(𝒓),𝒎))

Why is this scheme secure in the random oracle model?

Because, as long as the adversary did not query the oracle on 𝒓, the
value of 𝑯(𝒓) is completely random.

To learn 𝒓 the adversary would need to compute it from 𝒓𝒆𝐦𝐨𝐝 𝑵,
so he would need to invert RSA.

So (with a very high probability) from the point of view of the
adversary 𝑯(𝒓) is random.

Therefore the CCA-security of (𝐄𝐧𝐜,𝐃𝐞𝐜) follows from the CCA-
security of (𝐄𝐧𝐜’, 𝐃𝐞𝐜’).

A drawback of this method

𝐄𝐧𝐜((𝑵, 𝒆),𝒎) ∶= (𝒓𝒆 𝐦𝐨𝐝 𝑵, 𝐄𝐧𝐜′(𝑯(𝒓),𝒎))

The ciphertext is longer than 𝑵 even if the
message is short.

Therefore in practice another method is used:

Optimal Asymmetric Encryption Padding
(OAEP).

Optimal Asymmetric Encryption
Padding (OAEP) – the history

• Introduced in:
[M. Bellare, P. Rogaway. Optimal Asymmetric Encryption
-- How to encrypt with RSA. Eurocrypt '94]

• An error in the security proof was spoted in
[V. Shup. OAEP Reconsidered. Crypto ’01]

• This error was repaired in
[E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern.
RSA-OAEP is secure under the RSA assumption. Crypto
’01]

It is now a part of a PKCS#1 v. 2.0 standard.

OAEP

𝐎𝐀𝐄𝐏(𝒎) ∶=

𝒎 𝟎𝟎𝟎…𝟎 random 𝒓

𝑮

𝑯

𝑿 𝒀

𝒌𝟏ℓ 𝒌𝟎

𝑵 – RSA modulus
ℓ, 𝒌𝟏, 𝒌𝟐 – parameters such that
ℓ + 𝒌𝟏 + 𝒌𝟐 ≤ ⌊𝐥𝐨𝐠𝟐𝑵⌋
hash functions:
• 𝑮: 𝟎, 𝟏 𝒌𝟎 → 𝟎,𝟏 ℓ+𝒌𝟏 ,
• 𝑯: 𝟎, 𝟏 ℓ+𝒌𝟏 → 𝟎, 𝟏 𝒌𝟎

How to invert?

𝒎 𝒁

𝑮

𝑯

𝑿 𝒀

If 𝒁 = 𝟎𝟎𝟎…𝟎
then output 𝒎,

otherwise
output ⊥.

RSA-OAEP

key pair like in the handbook RSA:
private key: (𝑵, 𝒅)

public key: (𝑵, 𝒆)

𝐄𝐧𝐜 𝑵, 𝒆 ,𝒎 ≔ (𝐎𝐀𝐄𝐏(𝒎))𝒆𝐦𝐨𝐝 𝑵

𝐃𝐞𝐜 𝑵, 𝒆 , 𝒄 ≔ let 𝒙 ≔ 𝒄𝒅 𝐦𝐨𝐝 𝑵

if 𝒙 > 𝟐ℓ+𝒌𝟏+𝒌𝟐 then output ⊥
otherwise output 𝐎𝐀𝐄𝐏−𝟏(𝒙)

Security of RSA-OAEP

Security of RSA-OAEP can be proven
• if one models 𝑯 and 𝑮 as random oracles
• assuming the RSA assumption holds.

We do not present the proof here.

We just mention some nice properties of this encoding.

Nice properties of OAEP
(for the right choice of parameters)

• it is invertible

• but to invert you need to know
(𝑿, 𝒀) completely

• for every message 𝒎 the encoding
𝐎𝐀𝐄𝐏(𝒎)

is uniformly random

• It is hard to produce a valid
(𝑿, 𝒀) “without knowing 𝒎 first”

good for
the CPA-
security

good for
the CCA-
security

OAEP is hard to invert if you don’t know
𝑿 and 𝒀 completely.

Actually:
𝒎 is completely hidden in such a case.

(assuming 𝑮 and 𝑯 are random oracles)

Why?

m Z

G

H

X Y

Look at the picture:

The encoding 𝐎𝐀𝐄𝐏 𝒎 is uniformly random

𝒎 𝟎𝟎𝟎…𝟎 random 𝒓

G

H

X Y

Again look at the picture:

Why are these two properties
useful for CPA-security?
The adversary obtains

𝐄𝐧𝐜𝒑𝒌 𝒎𝒃 = 𝒙𝒆 𝐦𝐨𝐝 𝑵

where 𝒙 = 𝐎𝐀𝐄𝐏 𝒎𝒃 .

In order to get any information about 𝒎𝒃 needs
to compute the entire value of 𝒙, where 𝒙 is
uniformly random.

Hardness of this problem is equivalent to the RSA
assumption.

m Z

G

H

X Y

requirement: 𝒁 = 𝟎𝟎𝟎…𝟎

It is hard to produce a valid (𝑿, 𝒀) “without
knowing 𝒎 first”

Informally:

Eve can produce valid ciphertexts only of those
messages that she knows...

This last property is useful for
CCA-security
Why?

The only way to produce a valid ciphertext is to do
the following:
• choose 𝒎

• compute 𝒄 ≔ 𝐎𝐀𝐄𝐏 𝒎
𝒆
𝐦𝐨𝐝 𝑵.

Note

In “handbook RSA” this is not the case since every
𝒄 ∈ 𝒁𝑵

∗ is a valid ciphertext.

Also in the PKCS #1: RSA Encryption Standard
Version 1.5 standard the probability of producing
a valid ciphertext is noticeable.

An interesting attack on OAEP
J. Manger: A Chosen Ciphertext Attack on RSA
Optimal Asymmetric Encryption Padding (OAEP)
as Standardized in PKCS #1 v2.0. CRYPTO 2001

Based on the following fact:

the decryption algorithm outputs ⊥ in two cases:

1. “𝒙 > 𝟐ℓ+𝒌𝟏+𝒌𝟐”,

2. or 𝒁 ≠ 𝟎𝟎𝟎…𝟎.

The attack exploits the fact that in the PKCS #1 v2.0
standard the error messages in these two cases
were different.

Moral: implementation details matter!

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or
all of this material is currently granted without fee provided that copies are made
only for personal or classroom use, are not distributed for profit or commercial
advantage, and that new copies bear this notice and the full citation.

