
Lecture 2
Symmetric Encryption I

10.10.18 version 1.0

Stefan Dziembowski
www.crypto.edu.pl/Dziembowski

University of Warsaw

Plan

1. Computational definitions of security

2. If semantically-secure encryption
exists then P ≠ NP

3. A proof that “the PRGs imply secure
encryption”

4. Theoretical constructions of PRGs

5. Stream ciphers

How to change the security definition?

An encryption scheme is perfectly secret if for every m0,m1 ∈ M

Enc(K, m0) and Enc(K, m1) are identically distributed

we will require that m0,m1 are chosen by a poly-time adversary

we will require that no poly-time adversary can distinguish
Enc(K, m0) from Enc(K, m1)

A game

adversary
(polynomial-time probabilistic Turing machine) oracle

chooses m0,m1 such that
|m0|=|m1|

m0,m1 1. selects k randomly from
{0,1}n

2. chooses a random b = 0,1
3. calculates

c := Enc(k,mb)

(Enc,Dec) – an encryption scheme

chas to guess b

Security definition:
We say that (Enc,Dec) is semantically-secure if any polynomial time adversary

guesses b correctly with probability at most
𝟏

𝟐
+ ε(n), where ε is negligible.

security parameter
1n

Alternative name: has indistinguishable encryptions

Testing the definition

Suppose the adversary can compute k from Enc(k,m).
Can he win the game?

YES!

Suppose the adversary can compute some bit of m
from Enc(k,m). Can he win the game?

YES!

Multiple messages
In real-life applications we need to encrypt multiple

messages with one key.

The adversary may learn something about the key by
looking at

ciphertexts c1,...,ct of

some messages m1,...,mt.

How are these messages chosen?
let’s say: the adversary can choose them!

(good tradition: be as pessimistic as possible)

A chosen-plaintext attack (CPA)

oracle

chooses 𝒎𝟏
′

𝒎𝟏
′

c1 = Enc(k,𝒎𝟏
′)

has to guess b

chooses 𝒎𝒕
′ 𝒎𝒕

′

ct = Enc(𝒎𝒕
′)

m0,m1

c = Enc(k,mb)

chooses m0,m1

the interaction continues . . .

security parameter
1n

1. chooses random 𝒌 ← 𝟎, 𝟏 𝒏

2. chooses random 𝒃 ← {𝟎, 𝟏}

. . .

challenge phase:

CPA-security

We say that (Enc,Dec) has indistinguishable encryptions
under a chosen-plaintext attack (CPA) if

every randomized polynomial time adversary
guesses b correctly

with probability at most
𝟏

𝟐
+ 𝜺 𝒏 , where 𝜺 is negligible.

Alternative name: CPA-secure

Security definition

Observation

A CPA-secure encryption scheme cannot be
deterministic.

Typical options:

• Enc has a “state” (e.g. a counter)

• Enc is randomized, i.e., it takes as additional
input:
• some perfect randomness 𝑹, or

• takes as an nonce 𝑹
weaker

requirement

nonce = “number used once”

CPA in real-life
Q: Aren’t we too pessimistic?

A: No! CPA can be implemented in practice.

Example: routing

m

k kEnck(m)

Other attacks known in the literature

• ciphertext-only attack – the adversary has no
information about the plaintext

• known plaintext attack – the plaintext are drawn from
some distribution that the adversary does not control

• batch chosen-plaintext attack – like the CPA attack,
but the adversary has to choose m1,...,mt at once.

• chosen ciphertext attack – we will discuss it later…

(“our” CPA-attack is also called the “adaptive CPA-attack”)

st
ro

n
g

 w
e

a
k

Plan

1. Computational definitions of security

2. If semantically-secure encryption
exists then P ≠ NP

3. A proof that “the PRGs imply secure
encryption”

4. Theoretical constructions of PRGs

5. Stream ciphers

Is it possible to prove security?

Bad news:

Theorem

P ≠ NP

If semantically-secure
encryption exists
(with |k| < |m|)

then

Intuition: if P = NP then the adversary can guess the key...
(formal proof – exercises)

Moral:
“If P=NP, then the semantically-secure encryption is
broken”

Is it 100% true?

Not really...

This is because even if P=NP we do not know what
are the constants.

Maybe P=NP in a very “inefficient way”...

To prove security of a cryptographic scheme we need to show
a lower bound on the computational complexity of some

problem.

In the “asymptotic setting” that would mean that
at least

we show that P ≠ NP.

Does the implication in the other direction hold?
(that is: does P ≠ NP imply anything for cryptography?)

No! (at least as far as we know)

Therefore

proving that an encryption scheme is secure is probably much
harder than proving that P ≠ NP.

What can we prove?

We can prove conditional results.

That is, we can show theorems of a type:

Suppose that some
scheme Y is secure

then scheme X is
secure.

Suppose that some
“computational
assumption A”

holds

then scheme X is
secure.

A natural question

What is “the minimal assumption” needed for
cryptography?

Answer: existence one-way functions.

We introduce them now.

Why P ≠ NP is not enough?

oracle

chooses 𝒎

𝒎

c = Enc(k,m)

𝒌 ← 𝟎, 𝟏 𝒏

Intuition:

It may be that:

• it is NP-hard to compute 𝒌 from c = Enc(k,m),
• but it is easy on average.

The “minimal assumption for
cryptography”?
In the scenario from the previous slide we need that:

for a fixed 𝒎 the key 𝒌 is hard to compute from

c = Enc(k,m)

if 𝒌 is random
look at it as: a fixed function 𝒇 of 𝒌

defined as 𝒇 𝒌 = 𝐄𝐧𝐜(𝒌,𝒎)

we need that
𝒌 is hard to compute from 𝒇(𝒌).

Such 𝒇 is called one-way.

𝒙′

One-way functions
A function

f : {0,1}* → {0,1} *

is one-way if it is: (1) poly-time computable, and (2) “hard to invert it”.

f
random

𝒙 ∈ {0,1}n 𝒇(𝒙)

probability that any poly-time adversary
outputs 𝒙′ such that

𝒇 𝒙 = 𝒇 𝒙′

is negligible in n.

A real-life analogue: phone book

A function:

people → numbers

is “one way”.

More formally...

experiment (machine M, function f)

1. pick a random element 𝒙 ← 𝟎, 𝟏 𝒏

2. let 𝒚 ≔ 𝒇 𝒙 ,

3. let 𝒙′ be the output of M on y
4. we say that M won if 𝒇 𝒙′ = 𝒚.

We will say that a poly-time computable 𝒇: 𝟎, 𝟏 ∗ → 𝟎, 𝟏 ∗

is one-way if

polynomial-time
Turing Machine M

P (M wins) is negligible∀

Example of a (candidate for) a one-way
function

If P=NP then one-way functions don’t exist.

Therefore currently no function can be proven to be one-way.

But there exist candidates.

Example:

𝒇 𝒑, 𝒒 = 𝒑𝒒, where 𝒑 and 𝒒 are primes such that 𝒑 = |𝒒|.

this function is defined on
primes × primes,

not on
{0,1}*

but it’s just a technicality

One way functions do not “hide all the
input”

Example:

one-way
function

𝒇

𝒙𝟏

𝒙𝒏

𝒇(𝒙)

𝒙𝒏+𝟏𝒙𝒏+𝟏

𝒇’(𝒙𝟏, … , 𝒙𝒏+𝟏) ∶= 𝒇(𝒙𝟏, … , 𝒙𝒏) || 𝒙𝒏+𝟏 is also a one-way function

Research program in cryptography

Base the security of cryptographic schemes on a small
number of well-specified “computational assumptions”.

then scheme X is
secure.

Some “computational
assumption A”

holds

in this we
have to

“believe”

the rest is
provable

Examples of A:
𝒇 is one-way

“decisional Diffie-Hellman assumption”
“strong RSA assumption”

interesting only if
this is “far from

trivial”

Example

we can construct a secure
encryption scheme based on G

Suppose that G is a
“cryptographic

pseudorandom generator”

Plan

1. Computational definitions of security

2. If semantically-secure encryption
exists then P ≠ NP

3. A proof that “the PRGs imply secure
encryption”

4. Theoretical constructions of PRGs

5. Stream ciphers

Pseudorandom generators

s G(s) ℓ(𝒏)n

l – polynomial such that always l(n) > n

An algorithm G : {0,1}* → {0,1}* is called a pseudorandom generator (PRG)
if

for every n
and for every s such that |s| = n

we have
|G(s)| = l(n).

and for a random s the value G(s) “looks random”.

Definition

“expansion
factor”

this has to
be

formalized

“seed”

Idea
Use PRGs to “shorten” the key in the one time pad

s G(s)

Key: random string of length n
Plaintexts: strings of length ℓ 𝒏

Enc(s,m)
m

m
xor
G(s)

xor

s G(s) c

c
xor
G(s)

Dec(s,m)

If we use a “normal PRG” – this idea doesn’t work
We have to use the cryptographic PRGs.

for a moment just
consider a single

message case

𝟎, 𝟏 ℓ(𝒏)

“Looks random”

Suppose s  {0,1}n is chosen randomly.

Can G(s)  𝟎, 𝟏 ℓ(𝒏) be uniformly random?

No!

{0,1}n

G({0,1}n)

“Looks random”

What does it mean?

Non-cryptographic applications:

should pass some statistical tests.

Cryptography:

should pass all polynomial-time tests.

Non-cryptographic PRGs

Example: Linear Congruential Generators (LCG)
defined recursively

• 𝑿𝟎 ∈ 𝒁𝒎– the key

• for 𝒏 = 𝟏, 𝟐,… let
𝑿𝒏+𝟏 ≔ 𝒂 ⋅ 𝑿𝒏 + 𝒄 𝐦𝐨𝐝𝒎

output: 𝒀𝟏, 𝒀𝟐, … where

Yi = first t bits of each Xi

rand() function in Windows – an LCG with

a = 214013, c = 2531011, m = 232, t = 15

How to break an LRS

Solve linear equations with “partial knowledge” (because you only
know only first t bits)

See:

G. Argyros and A. Kiayias: I Forgot Your Password: Randomness
Attacks Against PHP Applications, USENIX Security '12

(successful attacks on password-recovery mechanisms in PHP)

Y1 Y2 … Yn X0

PRG – main idea of the definition

a random string R

outputs:

b {0,1}

G(S)

a probabilistic
polynomial-time
distinguisher D

should not be able to distinguish...

scenario 0

scenario 1

Cryptographic PRG

a random string R

𝑮(𝑺) (where 𝑺 random)

or

Should not be able to
distinguish...

outputs:

𝟎 if he thinks it’s R

1 if he thinks it’s 𝑮(𝑺)

𝒏 – a parameter
𝑺 – a variable distributed uniformly over {𝟎, 𝟏}𝒏

𝑹 – a variable distributed uniformly over 𝟎, 𝟏 ℓ(𝒏)

𝑮 is a cryptographic PRG if
for every polynomial-time Turing Machine 𝑫

we have that

𝑷 𝑫 𝑹 = 𝟏 –𝑷 𝑫 𝑮 𝑺 = 𝟏

is negligible in 𝒏.

Definition

Constructions

There exists constructions of cryptographic
pseudorandom-generators, that are conjectured to
be secure.

We will discuss them later...

Theorem

If G is a cryptographic
PRG then the encryption
scheme constructed
before is semantically
secure.

cryptographic PRGs
exist

CPA-secure encryption
exists

Proof (sketch)

Suppose that it is not secure.
Therefore there exists an poly-time adversary that wins the

“guessing game” with probability
𝟏

𝟐
+ 𝜹 𝒏 where 𝜹(𝒏) is not

negligible.

s G(s) m

m
xor
G(s)

xor

(for simplicity consider only the single message case)

x

chooses 𝒎𝟎, 𝒎𝟏 𝒎𝟎,𝒎𝟏 1. b = 0,1 random
2. c := x xor mb

simulates

If the adversary
guessed b correctly

otherwise

output 1:
“x is pseudorandom”.

output 0:
“x is random”.

tries to guess b c

x

chooses 𝒎𝟎, 𝒎𝟏 𝒎𝟎,𝒎𝟏 1. b = 0,1 random
2. c := x xor mb

simulates

If the adversary
guessed b correctly

otherwise

output 1:
“x is pseudorandom”.

output 0:
“x is random”.

tries to guess b c

“scenario 0”: x is a random string

prob.
𝟏

𝟐
prob.

𝟏

𝟐

x

chooses 𝒎𝟎, 𝒎𝟏 𝒎𝟎,𝒎𝟏 1. b = 0,1 random
2. c := x xor mb

simulates

If the adversary
guessed b correctly

otherwise

output 1:
“x is pseudorandom”.

output 0:
“x is random”.

tries to guess b c

“scenario 1”: x = G(S)

prob.
𝟏

𝟐
+ 𝜹(𝒏) prob.

𝟏

𝟐
− 𝜹(𝒏)

𝒙 is a random string 𝑹 𝒙 = 𝑮(𝑺)

the adversary guesses b correctly

with probability
𝟏

𝟐

the adversary guesses b correctly

with probability
𝟏

𝟐
+ 𝜹(𝒏)

prob.
𝟏

𝟐
prob.

𝟏

𝟐
prob.

𝟏

𝟐
+ 𝜹(𝒏) prob.

𝟏

𝟐
− 𝜹(𝒏)

1 0 1 0outputs:

Hence

Since δ is not negligible G cannot be a cryptographic PRG.

|𝑷 𝑫 𝑹 = 𝟏 − 𝑷(𝑫 𝑮 𝑺 = 𝟏| =
𝟏

𝟐
−

𝟏

𝟐
+ 𝜹 𝒏 = 𝜹(𝒏)

The complexity

The distinguisher simply simulated

one execution of the adversary

against the oracle .

Hence he works in polynomial time.

QED

Moral

To construct secure encryption it suffices to
construct a secure PRG.

Moreover, we can also state the following:

cryptographic PRGs
exist

semantically-secure encryption
exists

Informal remark. The reduction is tight.

it can be extended to CPA-security

A question

What if the distinguisher needed to simulate

1000 executions of the adversary ?

An (informal) answer

Then, the encryption scheme would be “1000 times less secure”
than the pseudorandom generator.

Why?

To achieve the same result needs to work 1000 times

more than .

General rule

secret string X

“pseudorandom” string X

secret string S

Take a secure system that uses some long secret string X.

Then, you can construct a system that uses a shorter string S,
and expands it using a PRG:

𝑿 = 𝑮(𝑺)

G

Constructions of PRGs

a PRG can be constructed from any one-way function
(very elegant, impractical, inefficient)

For example
[Blum, Blum, Shub. A Simple Unpredictable Pseudo-Random Number
Generator]
(elegant, more efficient, still rather impractical)

ugly, very efficient, widely used in practice

Examples: RC4, Trivium, SOSEMANUK,...

A theoretical result

Based on hardness of some
particular computational problems

“Stream ciphers”

Plan

1. Computational definitions of security

2. If semantically-secure encryption
exists then P ≠ NP

3. A proof that “the PRGs imply secure
encryption”

4. Theoretical constructions of PRGs

5. Stream ciphers

How to encrypt with one-way
functions?
Naive (and wrong) idea:

1. Take a one-way function 𝒇,

2. Let a ciphertext of a message 𝑴 be equal to
𝑪 ∶= 𝒇(𝑴)

where is the key?

how to decrypt?

not all the input is
hidden...

CPA-secure encryption
exists

One of the most fundamental results
in symmetric cryptography

[Håstad, Impagliazzo, Levin, Luby A Pseudorandom Generator from any
One-way Function]:

“a PRG can be constructed from any one-way function”

cryptographic PRGs
exist

one-way functions
exist

The implication also holds in the other
direction

Enc

key
𝑲

plaintext
𝑴

ciphertext
𝑪(𝑲,𝑴)

𝒇(𝑲) = 𝐄𝐧𝐜(𝑲, (𝟎, … , 𝟎)) is a one-way function

semantically-secure
encryption exists

one-way functions
exist

“Minicrypt”

CPA and semantically-secure
encryptions exists

cryptographic PRGs
exist

one-way functions
exist

The “world” where the one-way functions exist
is called “minicrypt”.

P ≠ NP

?
open problem

(most likely: no
implication)

Plan

1. If semantically-secure encryption
exists then P ≠ NP

2. A proof that “the PRGs imply secure
encryption”

3. Theoretical constructions of PRGs

4. Stream ciphers

Stream ciphers

The pseudorandom generators used in practice are
called stream ciphers

𝒔 𝒔

. . .

They are called like this because their
output is an “infinite” stream of bits.

How to encrypt multiple messages
using pseudorandom generators?

Of course we cannot just reuse the same seed
(remember the problem with the one-time pad?)

It is not just a theoretical problem!

𝒔 𝑮(𝒔)

𝐄𝐧𝐜(𝒔,𝒎)

𝒎
𝒎
𝐱𝐨𝐫
𝑮(𝒔)

𝐱𝐨𝐫

Misuse of RC4 in Microsoft Office
[Hongjun Wu 2005]

RC4 – a popular PRG (or a “stream cipher”)

“Microsoft Strong Cryptographic Provider”
(encryption in Word and Excel, Office 2003)

The key s is a function of a password and an initialization vector.

These values do not change between the different versions of the document!

Suppose Alice and Bob work together on some document:

𝐄𝐧𝐜(𝒔,𝒎)

𝐄𝐧𝐜(𝒔,𝒎’)

The adversary can compute 𝒎𝐱𝐨𝐫𝒎’

What to do?

There are two solutions:

1. The synchronized mode

2. The unsynchronized mode

How to encrypt several messages

𝒄𝟑

𝑮: {𝟎, 𝟏}𝒏 → {𝟎, 𝟏}𝐯𝐞𝐫𝐲 𝐥𝐚𝐫𝐠𝐞 – a PRG.

𝒎𝟎

𝒔

𝑮(𝒔)

𝒎𝟏 𝒎𝟐 𝒎𝟑

. . .

xor

𝒄𝟎 𝒄𝟏 𝒄𝟐

𝑮 is computed “on fly”

divide 𝑮(𝒔) in blocks:

this can be proven to be
CPA-secure

Unsynchronized mode

𝒎𝒊

𝒔

𝑮(𝐈𝐕𝒊, 𝒔)

𝑮(𝐈𝐕𝒊, 𝒔)

𝐈𝐕𝒊

xor

𝐈𝐕𝒊

𝐄𝐧𝐜(𝒔,𝒎𝒊)

Idea

Randomize the encryption
procedure.

Assume that 𝑮 takes as an
additional input

an initialization vector (𝐈𝐕).

The Enc algorithm selects a
fresh random IVi for each
message mi.

Later IVi is included in the
ciphertext

weaker
version: a

nonce

We need an “augmented” PRG
We need a PRG such that the adversary cannot distinguish 𝑮(IV, 𝒔) from a

random string even if she knows IV and some pairs

IV𝟎, 𝑮 IV𝟎, 𝒔 , IV𝟏, 𝑮 IV𝟏, 𝒔 , IV𝟐, 𝑮 IV𝟐, 𝒔 , . . .

where 𝒔, IV, IV𝟎, IV𝟏, IV𝟐… are random.

s

𝑮(IV, 𝒔)

G

IV

𝑹

𝐈𝐕 ?

with a non-negligible advantage

or

IV𝟎, 𝑮 IV𝟎, 𝒔 , IV𝟏, 𝑮 IV𝟏, 𝒔 , IV𝟐, 𝑮 IV𝟐, 𝒔 , . . .

A more modern approach:
design such a 𝑮 from scratch.

An old-fashioned approach:

1. take a standard PRG G
2. set 𝑮’(𝐈𝐕, 𝒔) ∶= 𝑮(𝑯(𝐈𝐕, 𝑺))

where 𝑯 is a “hash-function” (we will define cryptographic hash
functions later)

How to construct such a PRG?

often:
just concatenate

IV and S

Popular historical stream ciphers

Based on the linear feedback shift registers:

• A5/1 and A5/2 (used in GSM)
Ross Anderson:

• Content Scramble System (CSS) encryption

Other:

• RC4 until recently very popular, but has serious security weaknesses

completely broken

"there was a terrific row between the NATO signal intelligence
agencies in the mid 1980s over whether GSM encryption should be
strong or not. The Germans said it should be, as they shared a long
border with the Warsaw Pact; but the other countries didn't feel this
way, and the algorithm as now fielded is a French design."

completely broken

RC4

• Designed by Ron Rivest (RSA Security)
in 1987.
RC4 = “Rivest Cipher 4”, or “Ron's Code 4”.

• Trade secret, but in September 1994 its
description leaked to the internet.

• For legal reasons sometimes it is called: "ARCFOUR" or
"ARC4“.

• Used in WEP and WPA and TLS.

• Very efficient and simple, but has security flaws

RC4 – an overview

key 𝒌

key-scheduling
algorithm

(KSA)

array 𝑺i j

in each round this is updated
and 𝟏 byte is output

|𝒌| = 𝟒𝟎 – 𝟐𝟓𝟔 𝐛𝐢𝐭𝐬

|𝑺| = 𝟐𝟓𝟔 𝐛𝐲𝐭𝐞𝐬indices

(this is called a “pseudo-random generation algorithm (PRGA)”)

note: no IV

PRGA
i := 0
j := 0
while GeneratingOutput:

i := (i + 1) mod 256
j := (j + S[i]) mod 256
swap(S[i],S[j])
output S[(S[i] + S[j]) mod 256]

endwhile

KSA
for i from 0 to 255

S[i] := i
end
for j := 0 for i from 0 to 255

j := (j + S[i] + key[i mod 256]) mod 256
swap(S[i],S[j])

endfor

RC4

don’t read it!

Problems with RC4

1. Doesn’t have a separate IV.

2. It was discovered that some bytes of the output are
biased.
[Mantin, Shamir, 2001]

3. First few bytes of output sometimes leak some
information about the key
[Fluhrer, Mantin and Shamir, 2001]
Recommendation: discard the first 768-3072 bytes.

4. Other weaknesses are also known...

Use of RC4 in WEP

• WEP = “Wired Equivalent Privacy”

• Introduced in 1999, still widely used to protect
WiFi communication.

• How RC4 is used:
to get the seed, the key 𝒌 is concatenated with the IV
• old versions: |k| = 40 bits, |IV| = 24 bits

(artificially weak because of the US export
restrictions)

• new versions: |k| = 104 bits, |IV| = 24 bits.

RC4 in WEP – problems with the
key length
• |k| = 40 bits is not enough:

can be cracked using a brute-force attack

• IV is changed for each packet.
Hence |IV| = 24 bits is also not enough:
• assume that each packet has length 1500 bytes,
• with 5Mbps bandwidth the set of all possible IVs will be

exhausted in half a day

• Some implementations reset IV := 0 after each
restart – this makes things even worse.

see Nikita Borisov, Ian Goldberg, David Wagner (2001). "Intercepting
Mobile Communications: The Insecurity of 802.11"

RC4 in WEP – the weak IVs

[Fluhrer, Mantin and Shamir, 2001]
(we mentioned this attack already)

For so-called “weak IVs” the key stream reveals some
information about the key.

In response the vendors started to “filter” the weak IVs.

But then new weak IVs were discovered.

[see e.g. Bittau, Handley, Lackey The final nail in WEP's coffin.]

These attacks are practical!
[Fluhrer, Mantin and Shamir,
2001] attack:

Already in 2010: Aircrack-ng tool could break WEP in 1 minute (on a normal PC)

[see also: Tews, Weinmann, Pyshkin
Breaking 104 bit WEP in less than 60 seconds, 2007]

How bad is the situation?

RC4 is still rather secure if used in a correct way.

Example:

Wi-Fi Protected Access (WPA) – a successor of WEP:

several improvements (e.g. 128-bit key and a 48-bit
IV).

RC4 forbidden in TLS

Competitions for new stream
ciphers
• NESSIE (New European Schemes for Signatures,

Integrity and Encryption, 2000 – 2003) project
failed to select a new stream cipher (all 6
candidates were broken)

(where “broken” can mean e.g. that one can
distinguish the output from random after seeing
𝟐𝟑𝟔 bytes of output)

• eStream project (November 2004 – May 2008)
chosen a portfolio of ciphers: HC-128, Grain v1,
Rabbit, MICKEY v2, Salsa20/12, Trivium,
SOSEMANUK.

Salsa 20

One of the winners of the eStream competition.

Author: Dan Bernstein.

Very efficient both in hardware and in software.

𝐒𝐚𝐥𝐬𝐚𝟐𝟎 𝒌, 𝒓 ≔ 𝑯 𝒌, 𝒓, 𝟎 ||𝑯(𝒌, 𝒓, 𝟏)||⋯

key 𝒌
(size: 256 bits)

nonce 𝒓
(size: 64 bits)

How is H defined?

𝑯 𝒌, 𝒓, 𝒊

bits from 𝒌, 𝒓, and 𝒊

64
bytes

h h ⊞

some function 𝒉

. . .

𝟏𝟎 rounds

word (32 bit)
addition

Benchmarks

Algorithm MiB/Second
Cycles Per
Byte

Microseconds
to Setup Key
and IV

Cycles to
Setup Key and
IV

Salsa20/12 643 2.7 0.483 884

Sosemanuk 727 2.4 1.240 2269

RC4 126 13.9 2.690 4923

https://www.cryptopp.com/benchmarks.html
“All were coded in C++, compiled with Microsoft Visual C++ 2005 SP1 (whole program
optimization, optimize for speed), and ran on an Intel Core 2 1.83 GHz processor
under Windows Vista in 32-bit mode. x86/MMX/SSE2 assembly language routines
were used for integer arithmetic, AES, VMAC, Sosemanuk, Panama, Salsa20, SHA-256,
SHA-512, Tiger, and Whirlpool”

https://www.cryptopp.com/benchmarks.html

Is there an alternative to the
stream ciphers?

Yes!

the block ciphers

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or
all of this material is currently granted without fee provided that copies are made
only for personal or classroom use, are not distributed for profit or commercial
advantage, and that new copies bear this notice and the full citation.

