
Lecture 12

Secure Two-Party
Computation Protocols

19.12.18 version 1.0

Stefan Dziembowski
www.crypto.edu.pl/Dziembowski

University of Warsaw

http://www.crypto.edu.pl/Dziembowski

Plan

1. Introduction to two-party computation
protocols

2. Definitions

3. Information-theoretic impossibility

4. Constructions
1. oblivious transfer

2. computing general circuits

5. Fully homomorphic encryption

6. Applications

A love problem

𝑨 :=
𝟎 if Alice doesn’t love Bob

𝟏 if Alice loves Bob
𝑩 :=

𝟎 if Bob doesn’t love Alice

𝟏 if Bob loves Alice

They want to learn the value of
𝒇(𝑨, 𝑩) ∶= 𝑨 𝐚𝐧𝐝 𝑩

Solution?

𝑨

𝑩

Problem
If 𝑨 = 𝟎 and 𝑩 = 𝟏 then Alice knows that Bob loves him while she doesn’t!
If 𝑨 = 𝟏 and 𝑩 = 𝟎 then Bob knows that Alice loves him while he doesn’t!

computes
𝑨 𝐚𝐧𝐝 𝑩
locally

computes
𝑨 𝐚𝐧𝐝 𝑩
locally

Solution?

trusted
party

computes
𝑨 𝐚𝐧𝐝 𝑩

𝑨 𝑩

𝑨 𝐚𝐧𝐝 𝑩𝑨 𝐚𝐧𝐝 𝑩

Alice and Bob learn only the value of 𝒇(𝑨,𝑩) = 𝑨 𝐚𝐧𝐝 𝑩.

Of course: if 𝑨 = 𝑩 = 𝟏 then 𝒇(𝑨,𝑩) = 𝟏 and there is no secret to protect.

But, e.g., if 𝑨 = 𝟎 and 𝑩 = 𝟏 then 𝒇(𝑨,𝑩) = 𝟎 then Alice will not know the
value of 𝑩.

Question: Is it possible to compute 𝒇 without a trusted party?

Another example: “the millionaire’s
problem”

𝑨 := how much money
Abramovich has

𝑩 := how much money Berlusconi
has

𝒇(𝑨, 𝑩) ∶=

“Abramovich” if 𝑨 > 𝑩

“equal” if 𝑨 = 𝑩

“Berlusconi” if 𝑨 < 𝑩

How to solve this problem?

Can they compute 𝒇 in a secure way?

(secure = “only the output is revealed”)

Of course, they do not trust any “third party”.

Answer

It turns out that:

in both cases, there exists a cryptographic protocol
that allows 𝑨 and 𝑩 to compute 𝒇 in a secure way.

Moreover:

In general, every poly-time computable function f can be
computed securely by two-parties.

(assuming some problems are computationally hard)

Of course, this has to be defined...

Plan

1. Introduction to two-party computation
protocols

2. Definitions

3. Information-theoretic impossibility

4. Constructions
1. oblivious transfer

2. computing general circuits

5. Fully homomorphic encryption

6. Applications

What do we mean by a “secure function
evaluation”?

In general, the definition is complicated, and we’ll not present it here.

Main idea: suppose we have a function 𝒇: 𝟎, 𝟏 ∗ × 𝟎, 𝟏 ∗ → 𝟎, 𝟏 ∗

𝑨 𝑩

𝒇(𝑨, 𝑩) 𝒇(𝑨, 𝑩)

protocol
𝝅

Each of the parties may try to:
• learn something about the input of the other party, or
• disturb the output of the protocol.

What do we mean by a “secure
function evaluation”?

𝑨 𝑩

𝒇(𝑨, 𝑩) 𝒇(𝑨, 𝑩)

𝑨 𝑩

𝒇(𝑨, 𝑩) 𝒇(𝑨, 𝑩)

𝑨

𝒇(𝑨, 𝑩) 𝒇(𝑨, 𝑩)

𝑩
protocol

𝝅

“ideal” scenario“real” scenario

A malicious participant (Alice or Bob) should not be able to
• learn more information, or
• do more damage to the output
in the “real” scenario, than it can in the “ideal” one.

What do we mean by this?

For example:

Alice can always declare that she loves Bob, while in
fact she doesn’t.

A millionaire can always claim to be poorer or
reacher than he is...

But:
Berlusconi cannot force the output of the protocol to

be “equal” if he doesn’t know the value of 𝑨.

Let’s generalize it a bit:

𝑨 𝑩

𝒇𝟏(𝑨,𝑩) 𝒇𝟐(𝑨,𝑩)

1. the outputs of Alice and Bob can be different
2. the function that they compute may be randomized

An adversary

It is convenient to thing about an adversary that
corrupts one of the players.

(clearly if the adversary corrupts both players, there
is no sense to talk about any security)

Two goals that the adversary
may want to achieve

1. learn about the input of the other party “more
than he would learn in the ideal scenario”,

2. change the output of the protocol.

active, also called Byzantine
a corrupted party doesn’t need to follow the protocol

passive, also called: honest-but-curious:
a corrupted party follows the protocol

Two types of adversarial behavior
In general, we consider two types of adversarial behavior:

a protocol is actively secure if it is secure against one of
the parties behaving maliciously in an active way.

a protocol is passively secure if it is secure against one
of the parties behaving maliciously in a passive way.

Problem with active security

In general, it is impossible to achieve a complete
fairness.

That is: one of the parties may (after receiving her
own output)

prevent the other party from receiving her output
(by halting the protocol)

(remember the coin-flipping protocol?)

Fact

Let 𝝅 be a passively secure protocol computing
some function 𝒇.

Then, we can construct a protocol 𝝅’ that is actively
secure, and computes the same function 𝒇.

How?

Using Zero-Knowledge!

(we skip the details)

Power of the adversary

The malicious parties may be

• computationally bounded (poly-time)

• computationally unbounded.

We usually allow the adversary to “break the
security” with some negligible probability.

In this case we say that security is
information-theoretic

Plan

1. Introduction to two-party computation
protocols

2. Definitions

3. Information-theoretic impossibility

4. Constructions
1. oblivious transfer

2. computing general circuits

5. Fully homomorphic encryption

6. Applications

Some very natural functions cannot be
computed by an information-theoretically
secure protocol

Example

Consider a function

𝒇 𝑨,𝑩 = 𝑨 ∧ 𝑩.

There exists an infinitely-powerful adversary that
breaks any protocol computing it.

The adversary may even be passive.

A transcript
𝑨 𝑩

transcript
𝑻

Definition
Transcript 𝑻 is consistent with input 𝑨 = 𝑨𝟎
if there exist random inputs 𝑹𝑨 (for Alice) and (𝑩, 𝑹𝑩) (for Bob)
such that 𝑻 is a transcript of the execution of the protocol with
inputs
• 𝑨𝟎, 𝑹𝑨 – for Alice
• 𝑩,𝑹𝑩 – for Bob.

𝑨 ∧ 𝑩 𝑨 ∧ 𝑩

𝑹𝑨 𝑹𝑩

for 𝑩 – symmetric

1. Suppose 𝑨 = 𝟎 and 𝑩 = 𝟎

𝑨 𝑩

has to be consistent with 𝑨 = 𝟏

𝑻

Otherwise a
malicious Bob
knows that 𝑨 = 𝟎

𝑨 = 𝟎 𝑩 = 𝟎

2. Suppose 𝑨 = 𝟎 and 𝑩 = 𝟏

𝑨 𝑩

cannot be consistent with 𝑨 = 𝟏

𝑻

Because the output of the protocol
has to be different in these two
cases:
• 𝑨 = 𝟎 and 𝑩 = 𝟏 and
• 𝑨 = 𝟏 and 𝑩 = 𝟏

𝑩 = 𝟏𝑨 = 𝟎

So, if 𝑨 = 𝟎 then a malicious Alice has a way to learn
what the input of Bob!

𝑨 𝑩

𝑻

Alice checks if 𝑻 is consistent with 𝑨 = 𝟏
If yes then she knows that 𝑩 = 𝟎

otherwise 𝑩 = 𝟏

Moral

If we want to construct a protocol for computing
AND, we need to rely on computational

assumptions.

Plan

1. Introduction to two-party computation
protocols

2. Definitions

3. Information-theoretic impossibility

4. Constructions
1. oblivious transfer

2. computing general circuits

5. Fully homomorphic encryption

6. Applications

A question

Does there exist a protocol 𝝅 that is “complete for
secure two-party computations”?

In other words:

We are looking for 𝝅 such that:

if we have a secure protocol for 𝝅 then we can
construct a provably secure protocol for any
function?

Answer

Yes!

A protocol like this is exists.

It is called Oblivious Transfer (OT). There are two
versions if it:

• Rabin’s Oblivious Transfer
M. O. Rabin. How to exchange secrets by oblivious transfer,

1981.

• One-out-of-Two Oblivious Transfer
S. Even, O. Goldreich, and A. Lempel, A Randomized Protocol for

Signing Contracts, 1985.

Rabin’s Oblivious Transfer

sender receiver

input
bit 𝑨

outputs 𝑩 such that

𝑩 :=
𝑨 with probability 𝟏/𝟐

? with probability 𝟏/𝟐

The sender should have no
information which was the case

If 𝑩 = ? then the receiver has
no information on 𝑨

One-out-of-two Oblivious Transfer

sender receiver

input
bits

(𝑨𝟎, 𝑨𝟏)

outputs 𝑪 such that

𝑪 :=
𝑨𝟎 if 𝑩 = 𝟎

𝑨𝟏 if 𝑩 = 𝟏

The sender should have no
information which was the case

then the receiver has no
information on the other 𝑨𝒊

input
bit 𝑩

We will also write

𝑪 ∶= 𝐎𝐓 𝑨𝟎, 𝑨𝟏 , 𝑩

Fact

Rabin’s Oblivious Transfer

and

One-out-of-Two Oblivious Transfer

are “equivalent”.

[Claude Crépeau. Equivalence between two flavours of oblivious transfer,
1988]

choose a random bit 𝑩

If 𝑹 ≠ 𝑩 then output 𝑨 = 𝑨𝑩⊕𝑨𝑹
otherwise he has no information on
𝑨𝟏−𝑩 so he has no information on 𝑨

choose random (𝑨𝟎, 𝑨𝟏) such that 𝑨𝟎⊕𝑨𝟏 = 𝑨

choose random bit 𝑹

sender receiver

input
bit 𝑨

sender receiver

input
bits

(𝑨𝟎, 𝑨𝟏)

input
bit 𝑩

𝑨𝑹

𝑨𝑩

Rabin OT1-out-of-2 OT

Rabin

1-out-of-2

It remains to show the opposite
direction

Rabin OT1-out-of-2 OT

𝜶𝟏 ? ? 𝜶𝟒 𝜶𝟓 ? 𝜶𝟕

𝜶𝟏 𝜶𝟐 𝜶𝟑 𝜶𝟒 𝜶𝟓 𝜶𝟔 𝜶𝟕

𝒌 times
Rabin OT

Let 𝑰 be the set of indices of the
bits that he “knows”.
Let 𝑰𝒄be the complement of 𝑰.

input
bits

(𝑨𝟎, 𝑨𝟏)

input
bit 𝑩

if 𝑩 = 𝟎 send (𝑿𝟎, 𝑿𝟏) ∶= (𝑰, 𝑰𝒄)
if 𝑩 = 𝟏 send (𝑿𝟎, 𝑿𝟏) ∶= (𝑰𝒄, 𝑰)

send
𝒁𝟎, 𝒁𝟏 ≔ (𝜷𝟎⊕𝑨𝟎, 𝜷𝟏⊕ 𝑨𝟏)

He outputs 𝜷𝑩⊕𝒁𝑩

the receiver
knows only the
indices in 𝜷𝑩

random
string of bits

𝜷𝟎 ≔

𝒊∈𝑿𝟎

𝜶𝒊

𝜷𝟏 ≔

𝒊∈𝑿𝟏

𝜶𝒊

Security?

1. The learn 𝑩 the sender would need to
distinguish 𝑰 from 𝑰𝒄

2. To learn both 𝑨𝟎 and 𝑨𝟏 the receiver would
need to know both 𝜷𝟎 and 𝜷𝟏
This is possible only if he knows all 𝜶𝒊’s
This happens with probability 𝟎. 𝟓𝒌.

An implementation of Rabin’s OT

sender receiver

input
bit 𝑨

a random RSA public key 𝒑𝒌 ≔ (𝑵, 𝒆)
𝑪 ∶= 𝐄𝐧𝐜𝒑𝒌(𝑨)

chooses a random
𝒙 from 𝒁𝑵

∗𝒚 ∶= 𝒙𝟐𝐦𝐨𝐝 𝑵

random 𝒛 such that 𝒛𝟐 = 𝒚𝐦𝐨𝐝 𝑵 If 𝒙 = ± 𝒛𝐦𝐨𝐝 𝑵 output ?

otherwise 𝐠𝐜𝐝(𝒙 − 𝒛,𝑵) is
a non-trivial factor of 𝑵
hence the receiver can
decrypt 𝑨 from 𝑪.
Output 𝑨

Remember the proof that computing square root is
equivalent to factoring?
We used the reasoning:
1. with probability 𝟎. 𝟓 we have 𝒙 ≠ ±𝒛𝐦𝐨𝐝 𝑵
2. if 𝒙 ≠ ±𝒛𝐦𝐨𝐝 𝑵 then 𝐠𝐜𝐝(𝒙 − 𝒛,𝑵) is a non-trivial

factor of 𝑵

Is it secure?

Against passive cheating?

YES!

Against active cheating?

Not so clear...

The sender acts as an oracle for computing square roots
modulo 𝑵.

Does it can help him?

We don’t know.

Solution
Add an intermediary step in which the sender proves
in zero-knowledge that he knows 𝒙.

How does it look now?

sender
receiver

input
bit 𝑨

a random RSA public key 𝒑𝒌 ∶= (𝑵, 𝒆)
𝑪 ≔ 𝐄𝐧𝐜𝒑𝒌(𝑨)

chooses a random
𝒙 from 𝒁𝑵

∗

𝒚 ∶= 𝒙𝟐𝐦𝐨𝐝 𝑵

random 𝒛 such that 𝒛𝟐 = 𝒚𝐦𝐨𝐝 𝑵

If 𝒙 = ± 𝒚𝐦𝐨𝐝 𝑵 output ?

otherwise 𝐠𝐜𝐝(𝒙 − 𝒛,𝑵) is
a non-trivial factor of 𝑵
hence the receiver can
decrypt 𝑨 from 𝑪.
Output 𝑨

receiver proves in ZK
that he knows 𝒙

Implementation of the 1-out-of-2 OT

(𝐆𝐞𝐧, 𝐄𝐧𝐜, 𝐃𝐞𝐜) – public key encryption scheme

(𝑬,𝑫) – private key encryption scheme

𝑨𝟎

𝑨𝟏

𝑩

1. generates two pairs
(𝒔𝒌𝟎, 𝒑𝒌𝟎)
(𝒔𝒌𝟏, 𝒑𝒌𝟏)

𝑪𝟎 , 𝑪𝟏

2. generates a random
symmetric key 𝑲

𝑿 ∶= 𝐄𝐧𝐜(𝒑𝒌𝑩, 𝑲)

3. computes:
𝑲𝟎 ∶= 𝐃𝐞𝐜(𝒔𝒌𝟎, 𝑿)
𝑲𝟏 ≔ 𝐃𝐞𝐜(𝒔𝒌𝟏, 𝑿)

𝑪𝟎 ∶= 𝑬(𝑲𝟎, 𝑨𝟎)
𝑪𝟏 ∶= 𝑬(𝑲𝟏, 𝑨𝟏)

𝒑𝒌𝟎 , 𝒑𝒌𝟏

4. computes 𝑨𝑩 as:
𝑨𝑩 = 𝑫(𝑲, 𝑪𝑩)

two cases:

𝑩 = 𝟎 𝑩 = 𝟏

𝑲𝟎= 𝑲 “random”

𝑲𝟏= “random” 𝑲

How to solve the love problem of
Alice and Bob using OT?

the output of Bob is equal to 𝟏
iff 𝑨 = 𝑩 = 𝟏,

so it is equal to 𝑨 ∧ 𝑩
Bob just outputs it

𝑨 𝑩

Sets 𝑨𝟎, 𝑨𝟏 ≔ (𝟎, 𝑨)

1-out-of-2
OT

𝑨 ∧ 𝑩

works, because: 𝑨 ∧ 𝑩 = 𝐎𝐓((𝟎, 𝑨), 𝑩)

output 𝑨 ∧ 𝑩

Oblivious Transfer for strings

What if the sender’s input (𝑨𝟎, 𝑨𝟏) is such that
each 𝑨𝒊 is a bit-string 𝑨𝒊

𝟎, … , 𝑨𝒊
𝒏 ?

If the adversary is passive: just apply OT to each

(𝑨𝟎
𝒋
, 𝑨𝟏

𝒋
) separately (with the same 𝑩).

If the adversary is active: it’s more complicated,
but a reduction also exists.

Is the oblivious transfer in Minicrypt?

As far as we know: no!

public-key
encryption exists

trap-door permutations
exist

key exchange
protocols exist

one way functions
existminicrypt

???

??
?

cryptomania

oblivious transfer
exist

???

??
?

Plan

1. Introduction to two-party computation
protocols

2. Definitions

3. Information-theoretic impossibility

4. Constructions
1. oblivious transfer

2. computing general circuits

5. Fully homomorphic encryption

6. Applications

How to compute any function?

We will now show how Alice and Bob can securely
compute any function 𝒇.

More precisely: they can compute any function
that can be computed by a poly-time Boolean
circuit.

Boolean circuits

a0 a1 a2 a3 b1 b2 b3 b4

neg

and

neg

neg

neg and

and

and

andand

and

and and

and

c1

and

c2 c5c4c3

input gates

output gates

conjunciton
gates

negation
gates

d
e

p
th

size: number of gates

input of Alice input of Bob

Main idea

Alice “encrypts” the circuit together with her input
and sends it to Bob.

Bob adds his input and computes the circuit gate-
by-gate.

They do it in such a way that the values on the
gates remain secret (except of the output gates)

Simplifying assumptions:

• Dishonest parties are honest-but-curious.

• Only Bob learns the output.

Let’s number the gates

a0 a1 a2 a3 b1 b2 b3 b4

neg

and

neg

neg

neg and

and

and

andand

and

and and

and

c1

and

c2 c5c4c3
function 𝒇:

1 2

3 4

5

Step 1: key generation

or 𝒂𝒋

and

x y

z

𝑲𝒙,𝟎

𝑲𝒙,𝟏

𝑲𝒚,𝟎

𝑲𝒚,𝟏

𝑲𝒛,𝟎

𝑲𝒛,𝟏

x y

z

For every gate (except of the output) Alice chooses two
random symmetric keys.

Alice does not send these keys to Bob.

Question

How to encrypt a message
𝑴

in such a way that in order to decrypt it
one needs to know two keys 𝑲𝟎 and 𝑲𝟏?

Answer
encrypt twice:

𝑬(𝑲𝟎, 𝑬(𝑲𝟏,𝑴))

Another assumption

Let’s assume that the encryption scheme (𝑬,𝑫) is
such that decrypting

𝑪 = 𝑬(𝑲,𝑴)

with a random key 𝑲′ yields error (⊥) with
overwhelming probability.

Step 2: encrypting keys

and

x y

z

𝑲𝒙,𝟎

𝑲𝒙,𝟏

𝑲𝒚,𝟎

𝑲𝒚,𝟏

𝑲𝒛,𝟎

𝑲𝒛,𝟏

x y

z

x y x and Y encrypted keys

0 0 0 E(Kx,0 , E(Ky,0 , Kz,0))

0 1 0 E(Kx,0 , E(Ky,1 , Kz,0))

1 0 0 E(Kx,1 , E(Ky,0 , Kz,0))

1 1 1 E(Kx,1 , E(Ky,1 , Kz,1))

analogously
for the xor
and neg gates

Main idea

If one knows

𝑲𝒙,𝒂 and 𝑲𝒙,𝒃

then one is able to decrypt only 𝑲𝒛,𝒄 such that 𝒄 = 𝒂 ∧ 𝒃

(all the other 𝑲𝒁,𝒊 ’s decrypt to ⊥)

x y x and Y encrypted keys

0 0 0 E(Kx,0 , E(Ky,0 , Kz,0))

0 1 0 E(Kx,0 , E(Ky,1 , Kz,0))

1 0 0 E(Kx,1 , E(Ky,0 , Kz,0))

1 1 1 E(Kx,1 , E(Ky,1 , Kz,1))

Output gates

out

x

y

Kx,0

Kx,1

“0”

“1”

x

y

x ciphertexts

0 E(Kx,0 , ”0”)

1 E(Kx,1 , “1”)

Step 3: sending ciphertexts

encrypted keys

E(Kx,0 , E(Ky,0 , Kz,0))

E(Kx,0 , E(Ky,1 , Kz,0))

E(Kx,1 , E(Ky,0 , Kz,0))

E(Kx,1 , E(Ky,1 , Kz,1))

For every gate Alice randomly permutes “encrypted keys”
and sends them to Bob.

𝑪𝒛,𝟏

𝑪𝒛,𝟐

𝑪𝒛,𝟑

𝑪𝒛,𝟒

The situation: Bob knows 4
ciphertexts for each gate

𝑪𝟏,𝟏 𝑪𝟏,𝟐 𝑪𝟏,𝟑 𝑪𝟏,𝟒

𝑪𝟐,𝟏 𝑪𝟐,𝟐 𝑪𝟐,𝟑 𝑪𝟐,𝟒

𝑪𝟒,𝟏 𝑪𝟒,𝟐 𝑪𝟒,𝟑 𝑪𝟒,𝟒

𝑪𝟑,𝟏 𝑪𝟑,𝟐 𝑪𝟑,𝟑 𝑪𝟑,𝟒

𝑪𝟓,𝟏 𝑪𝟓,𝟐 𝑪𝟓,𝟑 𝑪𝟓,𝟒

and

neg

neg

and

and

3

1

2

4

5

3

1

2

4

5

How can Bob compute the output?

Our method: decrypt the circuit “bottom up” to obtain the
keys that decrypt the output.

In order to start Bob needs to learn the keys that
correspond to the input gates.

Recall that the input gates “belong” either to Alice or to Bob.

a0 a1 a2 a3 b1 b2 b3 b4

Alice’s input Bob’s input

Alice’s input

There is no problem with Alice’s input

Step 4: Alice sends to Bob the keys that correspond
to her input bits.

11 0 1

1 2 3 4

K1,1 K3,1K2,0 K4,1

Note: since the gates are permuted Bob does not learn if he
got a key that corresponds to 𝟎 or to 𝟏.

How to deal with Bob’s input?

Problem: Bob cannot ask Alice to send him the keys that correspond
to his input (because he would reveal his input to her).

On the other hand: Alice cannot send him both keys (because then he
would he able to compute 𝒇 on different inputs).

Solution: 1-out-of-2 Oblivious Transfer!

b1 b2 b3 b4

5 6 7 8
K5,0 K6,0 K7,0 K8,0

K5,1 K6,1 K7,1 K8,1

Yao’s method summarized

• “garbled” circuit computing 𝒇
• keys corresponding to input

bits 𝒂𝟏, … , 𝒂𝒏

𝒂𝟏, … , 𝒂𝒏 𝒃𝟏, … , 𝒃𝒎

𝒎 times oblivious transfer (for
each bit 𝒃𝒊)

computes the
circuit

bottom up
and learns
the output

Plan

1. Introduction to two-party computation
protocols

2. Definitions

3. Information-theoretic impossibility

4. Constructions
1. oblivious transfer

2. computing general circuits

5. Fully homomorphic encryption

6. Applications

A problem

Yao’s protocol has a high communication complexity:

Alice needs to send the entire encrypted circuit to Bob.

Can we do better?

An idea

If we could construct an encryption scheme

homomorphic with respect to field operations

then secure function evaluation would be simple.

𝐄𝐧𝐜(𝒑𝒌,𝑿)

𝐄𝐧𝐜(𝒑𝒌, 𝒀)

𝐄𝐧𝐜(𝒑𝒌,𝑿 + 𝒀)

𝐄𝐧𝐜(𝒑𝒌, 𝑿 × 𝒀)

does not know 𝒔𝒌

can compute

𝒔𝒌, 𝒑𝒌 − a key pair

Fully homomorphic encryption:
(assume that the set of messages is a field)

How to compute 𝒇 using such a cipher?
Assume that the field is 𝒁𝟐.
Then logical conjunction is equal to multiplication and
negation equals to “adding 𝟏”.

1. generates a pair (𝒔𝒌, 𝒑𝒌)
2. for every 𝒊 computes:

𝒄𝒊 = 𝐄𝐧𝐜(𝒑𝒌, 𝒂𝒊)

input: 𝒂𝟏, … , 𝒂𝒏 𝒑𝒌, 𝒂𝟏, … , 𝒂𝒏
input:

b1,…,bn

3. for every 𝒊 computes:
𝒅𝒊 = 𝐄𝐧𝐜(𝒑𝒌, 𝒃𝒊)

4. computes 𝒇 using the
homomorphism.

computes the ciphertext 𝒄 that
corresponds to the output

5. computes the result as
𝐃𝐞𝐜(𝒔𝒌, 𝒄)

Do such ciphers exist?

Some well-known ciphers are homomorphic with
respect to one field operation, e.g.:

• RSA is homomorphic with respect to
multiplication,

• Paillier encryption is homomorphic with
respect to addition.

Fully homomorphic encryption

A long-standing open problem.

First solution:
Craig Gentry. Fully Homomorphic Encryption Using Ideal
Lattices. STOC 2009.

Initially extremely inefficient.

Example:
key size: 2.3 GB,
key generation time: 2 hours
one field operation: 30 minutes

Plan

1. Introduction to two-party computation
protocols

2. Definitions

3. Information-theoretic impossibility

4. Constructions
1. oblivious transfer

2. computing general circuits

5. Fully homomorphic encryption

6. Applications

Applications?

In practice this protocol is extremely inefficient.

But it shows that some things in principle can be
done.

Research direction

Construct protocols (for concrete problems) that
are efficient.

Example
Michael J. Freedman, Kobbi Nissim, Benny Pinkas: Efficient Private

Matching and Set Intersection. EUROCRYPT 2004

Set intersection:

Alice and Bob want to see which friends they have in common
(without revealing to each other their lists of friends)

input:
set 𝑨

input:
set 𝑩

output:
intersection of

𝑨 and 𝑩

A natural question?

What if the number of parties is greater than 𝟐?

Solutions for this also exist!

(we will discuss them on the next lecture)

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or
all of this material is currently granted without fee provided that copies are made
only for personal or classroom use, are not distributed for profit or commercial
advantage, and that new copies bear this notice and the full citation.

