Lecture 12 Secure Two-Party Computation Protocols

Stefan Dziembowski

www.crypto.edu.pl/Dziembowski

University of Warsaw

19.12.18

version 1.0

Plan

- 1. Introduction to two-party computation protocols
- 2. Definitions
- 3. Information-theoretic impossibility
- 4. Constructions
 - 1. oblivious transfer
 - 2. computing general circuits
- 5. Fully homomorphic encryption
- 6. Applications

A love problem

Solution?

Problem

If A = 0 and B = 1 then Alice knows that Bob loves him while she doesn't! If A = 1 and B = 0 then Bob knows that Alice loves him while he doesn't!

Solution?

Alice and Bob learn **only** the value of f(A, B) = A and B.

Of course: if A = B = 1 then f(A, B) = 1 and there is no secret to protect.

But, e.g., if A = 0 and B = 1 then f(A, B) = 0 then Alice will not know the value of **B**.

Question: Is it possible to compute *f* without a trusted party?

Another example: "the millionaire's problem"

How to solve this problem?

Can they compute **f** in a secure way?

(secure = "only the output is revealed")

Of course, they **do not trust** any "third party".

Answer

It turns out that:

in both cases, there exists a cryptographic protocol that allows *A* and *B* to compute *f* in a secure way.

Moreover:

In general, every poly-time computable function **f** can be computed securely by two-parties.

Of course, this has to be defined...

(assuming some problems are computationally hard)

Plan

- 1. Introduction to two-party computation protocols
- 2. Definitions
- 3. Information-theoretic impossibility
- 4. Constructions
 - 1. oblivious transfer
 - 2. computing general circuits
- 5. Fully homomorphic encryption
- 6. Applications

What do we mean by a "secure function evaluation"?

In general, the definition is complicated, and we'll not present it here. <u>Main idea</u>: suppose we have a function $f: \{0, 1\}^* \times \{0, 1\}^* \rightarrow \{0, 1\}^*$

Each of the parties may try to:

- learn something about the input of the other party, or
- **disturb the output** of the protocol.

What do we mean by a "secure function evaluation"?

A malicious participant (Alice or Bob) should not be able to

- learn more information, or
- do more damage to the output

in the "real" scenario, than it can in the "ideal" one.

What do we mean by this?

For example:

Alice can always declare that she loves **Bob**, while in fact she doesn't.

A **millionaire** can always claim to be poorer or reacher than he is...

<u>But</u>:

Berlusconi cannot force the output of the protocol to be "equal" if he doesn't know the value of **A**.

Let's generalize it a bit:

- 1. the outputs of **Alice** and **Bob** can be different
- 2. the function that they compute may be randomized

An adversary

It is convenient to thing about an adversary that **corrupts one of the players.**

(clearly if the adversary corrupts **both** players, there is no sense to talk about any security)

Two goals that the adversary may want to achieve

1. learn about the input of the other party "more than he would learn in the ideal scenario",

2. change the output of the protocol.

Two types of adversarial behavior

In general, we consider two types of adversarial behavior:

passive, also called: honest-but-curious: a corrupted party follows the protocol

a protocol is **passively secure** if it is secure against one of the parties behaving maliciously **in a passive way**.

active, also called Byzantine

a corrupted party doesn't need to follow the protocol

a protocol is **actively secure** if it is secure against one of the parties behaving maliciously **in an active way**.

Problem with active security

In general, it is impossible to achieve a complete fairness.

<u>**That is</u>**: one of the parties may (after receiving her own output)</u>

prevent the other party from receiving her output (by halting the protocol)

(remember the coin-flipping protocol?)

Fact

Let π be a **passively secure** protocol computing some function f.

Then, we can construct a protocol π ' that is **actively secure**, and computes the same function *f*.

How?

Using **Zero-Knowledge**!

(we skip the details)

Power of the adversary

The malicious parties may be

- computationally bounded (poly-time)
- computationally <u>unbounded</u>.

In this case we say that security is information-theoretic

We usually allow the adversary to "break the security" with **some negligible probability**.

Plan

- 1. Introduction to two-party computation protocols
- 2. Definitions
- 3. Information-theoretic impossibility
- 4. Constructions
 - 1. oblivious transfer
 - 2. computing general circuits
- 5. Fully homomorphic encryption
- 6. Applications

Some very natural functions cannot be computed by an **information-theoretically secure** protocol

Example

Consider a function

 $f(A,B) = A \wedge B.$

There exists an infinitely-powerful adversary that breaks **any protocol computing it**.

The adversary may even be passive.

A transcript

inputs

۲

1. Suppose A = 0 and B = 0

has to be consistent with A = 1

Otherwise a malicious Bob knows that A = 0

2. Suppose A = 0 and B = 1

So, if A = 0 then a malicious Alice has a way to learn what the input of Bob!

Moral

If we want to construct a protocol for computing **AND**, we need to rely on computational assumptions.

Plan

- 1. Introduction to two-party computation protocols
- 2. Definitions
- 3. Information-theoretic impossibility
- 4. Constructions
 - 1. oblivious transfer
 - 2. computing general circuits
- 5. Fully homomorphic encryption
- 6. Applications

A question

Does there exist a protocol π that is "complete for secure two-party computations"?

In other words:

We are looking for π such that:

if we have a secure protocol for π then we can construct a provably secure protocol for any function?

Answer

Yes!

A protocol like this is exists.

It is called **Oblivious Transfer (OT)**. There are two versions if it:

Rabin's Oblivious Transfer

M. O. Rabin. How to exchange secrets by oblivious transfer, 1981.

One-out-of-Two Oblivious Transfer

S. Even, O. Goldreich, and A. Lempel, **A Randomized Protocol for Signing Contracts**, 1985.

Rabin's Oblivious Transfer

One-out-of-two Oblivious Transfer

Fact

Rabin's Oblivious Transfer and One-out-of-Two Oblivious Transfer

are "equivalent".

[Claude Crépeau. Equivalence between two flavours of oblivious transfer, 1988]

It remains to show the opposite direction

Security?

- 1. The learn *B* the **sender** would need to distinguish *I* from *I***^{***c***}**
- 2. To learn both A_0 and A_1 the **receiver** would need to know both β_0 and β_1 This is possible only if he knows all α_i 's This happens with probability **0**. **5**^{*k*}.

An implementation of Rabin's OT

Is it secure?

Against **passive cheating**?

Against active cheating?

Not so clear...

YES!

The sender acts as an oracle for computing square roots modulo *N*.

Does it can help him?

We don't know.

Solution

Add an intermediary step in which the sender proves in zero-knowledge that he knows \boldsymbol{x} .

How does it look now?

Implementation of the 1-out-of-2 OT

(Gen, Enc, Dec) - public key encryption scheme
(E, D) - private key encryption scheme

How to solve the love problem of Alice and Bob using OT?

Oblivious Transfer for strings

What if the sender's input (A_0, A_1) is such that each A_i is a bit-string (A_i^0, \dots, A_i^n) ?

If the adversary is passive: just apply OT to each (A_0^j, A_1^j) separately (with the same **B**).

If the adversary is active: it's more complicated, but a reduction also exists.

Is the oblivious transfer in Minicrypt? As far as we know: **no!** cryptomania trap-door permutations exist 222 123 277 public-key oblivious transfer key exchange encryption exists protocols exist exist ??? ??? 222 277

one way functions exist

minicrypt

Plan

- 1. Introduction to two-party computation protocols
- 2. Definitions
- 3. Information-theoretic impossibility
- 4. Constructions
 - 1. oblivious transfer
 - 2. computing general circuits
- 5. Fully homomorphic encryption
- 6. Applications

How to compute any function?

We will now show how Alice and Bob can securely compute any function **f**.

More precisely: they can compute any function that can be computed by a **poly-time Boolean circuit**.

Boolean circuits

size: number of gates

Main idea

Alice "encrypts" the circuit together with her input and sends it to **Bob**.

Bob adds his input and computes the circuit **gate-by-gate**.

They do it in such a way that **the values on the gates remain secret** (except of the output gates)

Simplifying assumptions:

- Dishonest parties are *honest-but-curious*.
- Only Bob learns the output.

Let's number the gates

Step 1: key generation

For every gate (except of the output) Alice chooses two random symmetric keys.

Alice does not send these keys to Bob.

Question

How to encrypt a message

in such a way that in order to decrypt it one needs to know two keys K_0 and K_1 ?

Answer

encrypt twice:

 $\boldsymbol{E}(\boldsymbol{K}_0,\boldsymbol{E}(\boldsymbol{K}_1,\boldsymbol{M}))$

Another assumption

Let's assume that the encryption scheme (**E**, **D**) is such that decrypting

 $\boldsymbol{C}=\boldsymbol{E}(\boldsymbol{K},\boldsymbol{M})$

with a random key K' yields error (\bot) with overwhelming probability.

Step 2: encrypting keys

X	У	x and Y	encrypted keys	
0	0	0	$E(K_{x,0}, E(K_{y,0}, K_{z,0}))$	
0	1	0	$E(K_{x,0}, E(K_{y,1}, K_{z,0}))$	analogously for the xor
1	0	0	$E(K_{x,1}, E(K_{y,0}, K_{z,0}))$	and neg gates
1	1	1	$E(\mathbf{K}_{\mathbf{x},1}, E(K_{y,1}, K_{z,1}))$	

Main idea

x	У	x and Y	encrypted keys
0	0	0	$E(K_{x,0}, E(K_{y,0}, K_{z,0}))$
0	1	0	$E(K_{x,0}, E(K_{y,1}, K_{z,0}))$
1	0	0	$E(K_{x,1}, E(K_{y,0}, K_{z,0}))$
1	1	1	$E(K_{x,1}, E(K_{y,1}, K_{z,1}))$

If one knows

$K_{x,a}$ and $K_{x,b}$

then one is able to decrypt **only** $K_{z,c}$ such that $c = a \land b$

(all the other $K_{Z,i}$'s decrypt to \perp)

Output gates

X	ciphertexts		
0	<i>E</i> (<i>K</i> _{<i>x</i>,0} , "0")		
1	<i>E(K_{x,1}</i> , "1")		

Step 3: sending ciphertexts

For every gate **Alice** randomly permutes "encrypted keys" and sends them to **Bob**.

The situation: Bob knows 4 ciphertexts for each gate

How can Bob compute the output?

Our method: decrypt the circuit "bottom up" to obtain the keys that decrypt the output.

In order to start Bob needs to learn **the keys that correspond to the input gates**.

Recall that the input gates "belong" either to Alice or to Bob.

There is no problem with Alice's input

Step 4: Alice sends to Bob the keys that correspond to her input bits.

Note: since the gates are permuted **Bob** does not learn if he got a key that corresponds to **0** or to **1**.

How to deal with Bob's input?

<i>K</i> _{5,0}	<i>K</i> _{6,0}	<i>K</i> _{7,0}	<i>K</i> _{8,0}
<i>K</i> _{5,1}	K _{6,1}	<i>K</i> _{7,1}	<i>K</i> _{8,1}

Problem: Bob cannot ask **Alice** to send him the keys that correspond to his input (because he would reveal his input to her).

On the other hand: **Alice** cannot send him both keys (because then he would he able to compute **f** on different inputs).

Solution: 1-out-of-2 Oblivious Transfer!

Yao's method summarized

- "garbled" circuit computing *f*
- keys corresponding to input bits *a*₁, ..., *a_n*

 $a_1, ..., a_n$

m times oblivious transfer (for each bit *b_i*)

computes the circuit bottom up and learns the output

Plan

- 1. Introduction to two-party computation protocols
- 2. Definitions
- 3. Information-theoretic impossibility
- 4. Constructions
 - 1. oblivious transfer
 - 2. computing general circuits
- 5. Fully homomorphic encryption
- 6. Applications

A problem

Yao's protocol has a high communication complexity:

Alice needs to send the entire encrypted circuit to **Bob**.

Can we do better?

An idea

If we could construct an encryption scheme

homomorphic with respect to field operations

then secure function evaluation would be simple.

Fully homomorphic encryption:

(assume that the set of messages is a field)

How to compute **f** using such a cipher?

Assume that the field is \mathbb{Z}_2 .

Then **logical conjunction** is equal to **multiplication** and **negation** equals to "adding 1".

Do such ciphers exist?

Some well-known ciphers are homomorphic with respect to **one** field operation, e.g.:

- **RSA** is homomorphic with respect to multiplication,
- **Paillier encryption** is homomorphic with respect to addition.

Fully homomorphic encryption

A long-standing open problem.

First solution: Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. STOC 2009.

Initially extremely inefficient.

Example:

key size: **2.3 GB**, key generation time: **2 hours** one field operation: **30 minutes**

Plan

- 1. Introduction to two-party computation protocols
- 2. Definitions
- 3. Information-theoretic impossibility
- 4. Constructions
 - 1. oblivious transfer
 - 2. computing general circuits
- 5. Fully homomorphic encryption
- 6. Applications

Applications?

In practice this protocol is extremely inefficient.

But it shows that some things **in principle** can be done.

Research direction

Construct protocols (for concrete problems) that are efficient.

Example

Michael J. Freedman, Kobbi Nissim, Benny Pinkas: Efficient Private Matching and Set Intersection. EUROCRYPT 2004

Set intersection:

Alice and Bob want to see which friends they have in common (without revealing to each other their lists of friends)

A natural question?

What if the number of parties is greater than **2**?

Solutions for this also exist!

(we will discuss them on the next lecture)

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.