Lecture 11

Commitment Schemes and Zero Knowledge

Stefan Dziembowski

www.crypto.edu.pl/Dziembowski

University of Warsaw

version 1.0

Plan

- 1. Coin-flipping by telephone
- 2. Commitment schemes
 - 1. definition
 - 2. construction based on QRA
 - 3. construction based on discrete log
 - 4. construction based on PRG
- 3. Zero-knowledge (ZK)
 - 1. motivation and definition
 - 2. ZK protocol for graph isomorphism
 - 3. ZK protocol for Hamiltonian cycles
 - 4. applications

Coin-flipping by telephone [Blum'81]

privacy and authenticity is not a problem

Suppose Alice and Bob are connected by a secure internet link:

The goal of Alice and Bob is to toss a coin.

In other words:

They want to execute some protocol π in such a way that at the end of the execution they both output the same bit x distributed uniformly over $\{0, 1\}$.

How to define security? [1/2]

Let us just stay at an informal level...

From the point of view of Alice:

even if **Bob** is **cheating** (i.e.: he doesn't follow the protocol): if the protocol terminates successfully, then **x** has a uniform distribution

How to define security? [2/2]

The same holds from the point of view of Bob

even if Alice is **cheating** (i.e.: he doesn't follow the protocol): if the protocol terminates successfully, then **x** has a uniform distribution

Note the difference

Unlike what we saw on the previous lectures:

the enemy can be one of the parties (not an external entity)

A cheating party is sometimes called a **corrupted** party, or a **malicious** party.

We will see many other examples of this later!

How to solve this problem?

<u>Idea</u>

Remember the old game:

rock-paper-scissors?

		Alice		
				Sec
		draw	Alice wins	Bob wins
Bob		Bob wins	draw	Alice wins
		Alice wins	Bob wins	draw

Let's simplify this game

Alice

In other words: Alice wins iff $A \oplus B = 0$.

Another way to look at it

Alice has an input A Bob has an input B

they should jointly compute $x = A \bigoplus B$ (in a secure way)

What to do?

Problem:

A and *B* should be sent at the same time

(e.g. if *A* is sent before *B* then a malicious **Bob** can set $B := x \bigoplus A$, where *x* is chosen by him).

How to prevent this?

Seems hard:

the internet is not synchronous...

A solution:

bit commitments

Plan

1. Coin-flipping by telephone

- 2. Commitment schemes
 - 1. definition
 - 2. construction based on QRA
 - 3. construction based on discrete log
 - 4. construction based on PRG
- 3. Zero-knowledge (ZK)
 - 1. motivation and definition
 - 2. ZK protocol for graph isomorphism
 - 3. ZK protocol for Hamiltonian cycles
 - 4. Applications

Commitment schemes – an intuition

Commitment schemes – a functional definition

A **commitment scheme** is a protocol executed between Alice and Bob consisting of two phases: **commit** and **open**.

In the commit phase:
Alice takes some input bit *b*.
Bob takes no input.

In the **open** phase:

- Alice outputs nothing
- Bob outputs b, or error

Security requirements - informally

[binding] After the **commit** phase there exists at most one value **b** that can be open in the **open** phase.

[hiding]

As long as the **open** phase did not start **Bob** has no information about **b**.

How to define security formally?

Not so trivial – remember that the parties can misbehave arbitrarily.

We do not present a complete definition here.

(The hiding property can be defined using the "indistinguishability" principle.)

The definition depends on some options.

- 1. What is the computational power of a **cheating Alice**?
- 2. What is the computational power of a **cheating Bob**?

The computational power of the adversary

If a cheating Alice can be infinitely powerful, we say that the protocol is **unconditionally binding**.

Otherwise it is **computationally binding**.

If a cheating Bob can be infinitely powerful, we say that the protocol is **unconditionally hiding**.

Otherwise it is **computationally hiding**.

Of course, to be formal we would need to introduce a security parameter...

Unconditionally hiding and binding commitment schemes do not exist

Proof (intuition)

<u>There are two</u> <u>options:</u>

1. there exists a way to open 1 - b, or

in this case "infinitely powerful" Alice can cheat

2. there doesn't exist such a way

in this case "infinitely powerful" Bob can learn **b**

So, how does it solve the coinflipping problem?

Problem

Alice can always refuse to send the last message.

This is unavoidable (there has to be the **last message** in the protocol).

But they can use a convention: if Alice didn't send the last message – she lost!

Plan

- 1. Coin-flipping by telephone
- 2. Commitment schemes
 - 1. definition
 - 2. construction based on QRA
 - 3. construction based on discrete log
 - 4. construction based on PRG
- 3. Zero-knowledge (ZK)
 - 1. motivation and definition
 - 2. ZK protocol for graph isomorphism
 - 3. ZK protocol for Hamiltonian cycles
 - 4. Applications

Remember quadratic residues modulo an RSA modulus?

$$\mathbf{QR}_N = \{x^2 \bmod N \colon x \in \mathbf{Z}_N^*\}$$

Fact: For
$$N = pq$$
 we have $|\mathbf{QR}_N| = |\mathbf{Z}_N^*| / 4$.

Jacobi Symbol

Jacobi symbol can be computed efficiently! (even in *p* and *q* are unknown)

Quadratic Residuosity Assumption

Quadratic Residuosity Assumption (QRA):For a random $a \leftarrow Z_N^+$ it is computationally hardto determine if $a \in QR_N$.Formally: for every polynomial-timeprobabilistic algorithm D the value:

$$P(D(N,a) = Q_N(a)) - \frac{1}{2}$$

(where $a \leftarrow Z_N^+$) is negligible.

Where a predicate $Q_N: Z_N^+ \rightarrow \{0, 1\}$ is defined as follows: $Q_N(a) = 1$ if $a \in QR_N$ $Q_N(a) = 0$ otherwise

A construction based on **QRA**

This commitment scheme is unconditionally binding

Why?

Suppose Alice has sent (*N*, *x*) to Bob.

What can **Bob** output at the end of the opening phase?

There exists the following options:

- *N* is not an RSA modulus in this case Bob will always output error,
- $x \in \mathbf{QR}_N$ in this case **Bob** can only output **0** or **error**,
- $x \notin QR_N$ in this case **Bob** can only output **1** or **error**.

This commitment scheme is computationally hiding, assuming QRA holds

Proof (intuition)

To distinguish between b = 0 and b = 1 a malicious **Bob** would need to distinguish QR_N from the other elements of Z_N^* ...

Plan

1. Coin-flipping by telephone

2. Commitment schemes

- 1. definition
- 2. construction based on QRA
- 3. construction based on discrete log
- 4. construction based on PRG
- 3. Zero-knowledge (ZK)
 - 1. motivation and definition
 - 2. ZK protocol for graph isomorphism
 - 3. ZK protocol for Hamiltonian cycles
 - 4. applications

A construction based on discrete log

This commitment scheme is **computationally binding**, assuming that the discrete log is hard in **QR**_p

Proof (intuition)

To be able to open the commitment in two ways, a **cheating Alice** needs to know **y** and **y'** such that there exists **x** such that

$$g^{y} = x = s \cdot g^{y'}$$

But this means that $g^{y-y'} = s$. So, she would know the discrete log of s.

This commitment scheme is unconditionally hiding

Why?

Because \boldsymbol{x} is just a random element of \mathbf{QR}_{N} .

Plan

1. Coin-flipping by telephone

2. Commitment schemes

- 1. definition
- 2. construction based on QRA
- 3. construction based on discrete log
- 4. construction based on PRG
- 3. Zero-knowledge (ZK)
 - 1. motivation and definition
 - 2. ZK protocol for graph isomorphism
 - 3. ZK protocol for Hamiltonian cycles
 - 4. applications

A construction based on PRGs [Naor'91]

 $G: \{0, 1\}^L \to \{0, 1\}^{3L}$ a PRG

This commitment scheme is unconditionally binding

Proof (intuition)

To be able to open the commitment in two ways, a **cheating Alice** needs to find Z and Z' such that there exists Y such that: $G(Z) \bigoplus X = Y = G(Z')$ This means that $G(Z) \bigoplus G(Z') = X$.

How many **X**'s have the property that there exist **Z** and **Z**' such that $G(Z) \oplus G(Z') = X$? By the counting argument: at most $(2^L)^2 = 2^{2L}$. Therefore, the probability that a random $X \in \{0, 1\}^{3L}$ has this

Therefore, the probability that a random $X \in \{0, 1\}^{3L}$ has this property is at most

$$\frac{2^{2L}}{2^{3L}} = 2^{-L}$$

This commitment scheme is computationally hiding, assuming **G** is a secure **PRG**

Why?

Obviously, if, instead of G(Z) Alice uses a completely random string R, then the scheme is secure against a cheating Bob.

If a scheme behaved differently with R and with G(Z), then a cheating Bob could be used as a distinguisher for G.
Moral

Commitment schemes are a part of Minicrypt!

String commitment

How to commit to a longer string $x = (x_1, ..., x_n)$?

Just commit to every x_i separately.

To open the commitment, open each commitment to x_i .

(Bob accepts only if all the openings were ok)

Plan

1. Coin-flipping by telephone

2. Commitment schemes

- 1. definition
- 2. construction based on QRA
- 3. construction based on discrete log
- 4. construction based on PRG

3. Zero-knowledge (ZK)

- 1. motivation and definition
- 2. ZK protocol for graph isomorphism
- 3. ZK protocol for Hamiltonian cycles
- 4. applications

Zero-knowledge (ZK)

We will now talk about the **zero-knowledge proofs**.

Informally: A proof of some statement φ is **zero-knowledge**, if it doesn't reveal any information (besides the fact that φ holds).

Introduced in: [Shafi Goldwasser, Silvio Micali, Charles Rackoff: The Knowledge Complexity of Interactive Proof-Systems, STOC 1985, SIAM J. Comput. 1989]

A motivating example: public-key identification (see: the last lecture)

(Enc, Dec) – a public key encryption scheme

Is it secure against actively cheating verifier?

So is it secure?

(we didn't define security, so this is just an informal question)

To impersonate **Alice** one needs to be able to decrypt *c* without the knowledge of *m*.

What does the verifier learn about *sk*?

If the verifier follows the protocol – he doesn't learn anything that he didn't know before (he already knows *m*).

But what if the verifier is malicious?

Alice acts as a decryption oracle! (so the verifier learns something that he didn't know) is it a problem? – depends on the application

A question

Is it possible to design a protocol where

- a verifier learns nothing,
- besides of the fact that he is talking to Alice?

A new variant of the protocol

Can a malicious verifier learn something from this protocol?

Intuition:

No, because he

doesn't learn *m*'

(he already knows m').

Can this be proven formaly? Yes!

But we first need to

define what it means that "the verifier learns nothing".

This will lead us to the concept of **zero knowledge**

The general picture

L – some language (usually not in *P*)

Soundness - informally

A cheating prover cannot convince the verifier that $x \in L$

if it is **not** true

(negligible error probability is allowed)

Zero Knowledge

The only thing that the verifier should learn is that $x \in L$

This should hold even if the verifier doesn't follow the protocol.

(again: we allow some negligible error)

An example of a protocol that is **not** Zero Knowledge

L – some NP-complete language

Notation

Suppose we are given a protocol consisting of two randomized machines **P** and **V**.

Suppose *P* and *V* take some common input *x*, and then *V* outputs **yes** or **no**.

We say that (**P**, **V**) accepts **x** if **V** outputs **yes**. Otherwise we say that it **rejects x**.

View(P, V, x) - a random variable denoting the "view of V", i.e.:

- 1. the random input of **V** and the input **x**,
- 2. the **transcript of the communication**.

Zero-knowledge proofs

A pair (**P**, **V**) is a **zero-knowledge proof system** for **L** if it satisfies the following conditions:

- **P** has an infinite computing power and **V** is poly-time.
- <u>Completeness</u>: If $x \in L$, then the probability that (P, V) rejects x is negligible in the length of x.
- Soundness: If *x* ∉ *L* then for any prover *P*^{*}, the probability that (*P*^{*}, *V*) accepts *x* is negligible in the length of *x*.
- <u>Zero-Knowledge</u>: "a cheating *V* should not learn anything besides of the fact that $x \in L$ "

How to define it formally?

"a cheating V should not learn anything besides of the fact that $x \in L$ "

"What a cheating **V** can learn can be simulated without interacting with **P**"

Definition (main idea)

For every (even malicious) poly-time *V*^{*} there exists an (expected) poly-time machine *S* such that

{View(P, V^*, x)}_{$x \in L$} is "indistinguishable from" {S(x)}_{$x \in L$}

we will formalize it in a moment

The idea of simulation

Indistinguishability

Let $\alpha = \{A(x)\}_{x \in L}$ and $\beta = \{B(x)\}_{x \in L}$ be two sets of distributions.

$$\left|P(D(x,A(x))=1)-P(D(x,B(x))=1)\right| \leq \varepsilon(|x|) \quad (*)$$

 α and β are <u>statistically</u> indistinguishable if (*) holds also for infinitely powerful **D**.

 α and β are <u>perfectly</u> indistinguishable if (*) holds also for infinitely powerful **D**, and $\varepsilon = 0$.

"a cheating V should not learn anything besides of the fact that $x \in L$ "

Definition (a bit more formally)

For every (even malicious) poly-time V^* there exists an (expected) poly-time machine S such that

$\{\operatorname{View}(P, V^*, x)\}_{x \in L}$

is computationally indistinguishable from $\{S(x)\}_{x \in L}$

This is a definition of a **computational zero-knowledge**.

By changing the "computational indistinguishability" into

- "statistical indistinguishability" we get a statistical zeroknowledge
- "perfect indistinguishability" we get a perfect zeroknowledge

Plan

- 1. Coin-flipping by telephone
- 2. Commitment schemes
 - 1. definition
 - 2. construction based on QRA
 - 3. construction based on discrete log
 - 4. construction based on PRG
- 3. Zero-knowledge (ZK)
 - 1. motivation and definition
 - 2. ZK protocol for graph isomorphism
 - 3. ZK protocol for Hamiltonian cycles
 - 4. applications

Graph isomorphism

A graph is a pair (V, E), where E is a binary symmetric relation on V. A graph isomorphism between (V, E) and (V', E') is a function: $\varphi: V \to V'$

such that

$$(e_1, e_2) \in V ext{ iff } (\varphi(e_1), \varphi(e_2)) \in V'$$

Graphs *G* and *H* are **isomorphic** if there exists an isomorphism between them.

© Wikipedia

Hardness of graph isomorphism

No poly-time algorithm for the graph isomorphism problem is known.

Without loss of generality we will consider only isomorphism between (V, E) and (V', E'), where $V = V' = \{1, ..., n\}$ (for some n).

That is, a bijection:

 $\varphi: V \rightarrow V'$

is a permutation of the set {1, ..., n}.

A zero knowledge proof of graph isomorphism – a wrong solution

Notation

If G = (V, E) is a graph, and $\pi: V \to V$ is a permutation then by $\pi(G)$ we mean a graph G' = (V', E')where

 $(a, b) \in E$ iff $(\pi(a), \pi(b)) \in E'$

A fact

A zero knowledge proof of graph isomorphism

Why is this a zero-knowledge proof system?

- Completeness: trivial
- Soundness: Suppose G₀ and G₁ are not isomorphic

Then, **at least <u>one</u> of the following** has to hold:

- G₀ and H are not isomorphic
- *H* and *G*₁ are not isomorphic

Since the protocol is repeated *n* times, the probability that the verifier rejects is at least $1 - \left(\frac{1}{2}\right)^n$. Setting $n := |G_0| + |G_1|$ we are done!

Zero-knowledge?

Intuitively, the zero-knowledge property comes from the fact that:

The only thing that verifier learns is:

- a permutation between *H* and *G*₀ or *G*₁ where
- graph *H* is random graph isomorphic to *G*₀
 (and isomorphic to *G*₁).

(In fact: we can show that this is a **<u>perfect</u> zero knowledge proof system**.)

More formally

For every poly-time

there exists an (expected) poly-time

simulator **S**

such that

 $\{\operatorname{View}(P, V^*, x)\}_{x \in L}$ is perfectly indistinguishable from $\{S(x)\}_{x \in L}$

statement: graphs *G*⁰ and *G*¹ are isomorphic

The running time

First, observe, that the distribution of H doesn't depend on c (since it is uniform in the class of graphs isomorphic with G_0 and G_1)

Therefore the probability that **S** needs to restart V^* is equal to 1/2.

So the expected number of restarts is **2**.

Therefore, the running time is (expected) polynomial time.

Indistinguishability of the distributions

Suppose *i* = *c*, and hence we didn't restart.

In this case, the simulator simply simulated "perfectly" execution of *V** against *P*.

uniform in the class of graphs isomorphic with **G**₀ and **G**₁

OED

 $H := \pi(G_i)$ a random $i \in \{0, 1\}$ an isomorphism between *H* and *G_i*

Plan

- 1. Coin-flipping by telephone
- 2. Commitment schemes
 - 1. definition
 - 2. construction based on QRA
 - 3. construction based on discrete log
 - 4. construction based on PRG

3. Zero-knowledge (ZK)

- 1. motivation and definition
- 2. ZK protocol for graph isomorphism
- 3. ZK protocol for Hamiltonian cycles
- 4. applications

What is provable in NP?

Theorem [Goldreich, Micali, Wigderson, 1986]

Assume that the **one-way functions exist**.

Then, every language $L \in NP$ has a computational zeroknowledge proof system.

> How to prove it? It is enough to show it for one NP-complete problem!
Take the following NP-complete problem: Hamiltonian graphs

Example of a **Hamiltonian cycle**:

Hamiltonian graph – a graph that has a Hamiltonian cycle

 $L := \{G : G \text{ is Hamiltonian}\}$

How to construct a ZK proof that a graph *G* is Hamiltonian?

sending the Hamiltonian cycle in a graph *G* to the verifier doesn't work.

H is Hamiltonian iff*G* is Hamiltonian

Idea:

We permute the graph *G* randomly – let *H* be the permuted graph.

Then we prove that

- 1. *H* is Hamiltonian,
- 2. *H* is a permutation of *G*.

The first idea:

<u>Problem</u>: Prover can choose his response depending on *i*.

Solution: use commitments

Remember, that we assumed that the one-way functions exist, so we are "allowed" to use commitments!

Assume the vertices of the graph are natural numbers **{1**, ..., **n**}.

How to commit to a permutation of a graph? Represent it as a string

How to commit to a graph? Represent it as an **adjacency matrix**, and commit to each bit in the matrix separately.

Example

graph **H**:

 $\boldsymbol{M} = \left\{ \boldsymbol{M}_{ij} \right\}_{i,j \in \{A,\dots,B\}}$

	A	B	С	D	E
A	0	1	1	1	0
B	1	0	1	0	1
С	1	1	0	1	1
D	1	0	1	0	1
E	0	1	1	1	0

to commit to *H*: for *i* = *A*, ..., *E* for *j* = *A*, ..., *E*

Commit(*M_{ij}*)

verifier accepts only if all commitments were open correctly and all checks are ok

Example of a Hamiltonian graph

		1	2	4	5	3
		A	B	С	D	E
1	A	0	1	1	1	0
2	B	1	0	1	0	1
4	С	1	1	0	1	1
5	D	1	0	1	0	1
3	E	0	1	1	1	0

Example of a "permuted graph"

 $\pi(A) = E, \pi(B) = A, \pi(C) = B, \pi(D) = C, \pi(E) = D$

Case 0:

open everything but don't show the Hamiltonian cycle

Case 1

Open **only** the Hamiltonian cycle

Why is it a ZK proof?

Completeness: trivial **Soundness**: If *G* is not Hamiltonian, then either *H* is not Hamiltonian or π is not a permutation.

Therefore, to cheat with probability higher than 1/2 the prover needs to break the binding property of the commitment scheme.

If we use the commitment scheme of **Naor**, this probability is **negligible**, even against an infinitely-powerful adversary

Since the protocol is repeated n times, the probability that the verifier rejects is at least

$$1 - \left(\frac{1}{2}\right)^n$$

Zero-Knowledge - intuition

"a cheating V should not learn anything besides of the fact that $x \in L$ "

P "opens everything", so*V* just learns a randomly permuted graph *G*.

P "opens only the Hamiltonian cycle", so V just learns a randomly permuted cycle of vertices

Note, that this gives us only **computational** indistinguishability. This is because the commitment scheme is only computationally binding.

Observation

The honest prover doesn't need to be infinitely powerful, if he receives the **NP**-witness as an additional input!

Corollary

"Everything that is provable is provable in Zero Knowledge!"

Plan

- 1. Coin-flipping by telephone
- 2. Commitment schemes
 - 1. definition
 - 2. construction based on QRA
 - 3. construction based on discrete log
 - 4. construction based on PRG
- 3. Zero-knowledge (ZK)
 - 1. motivation and definition
 - 2. ZK protocol for graph isomorphism
 - 3. ZK protocol for Hamiltonian cycles
 - 4. applications

Example

Suppose, Alice knows a signature σ of Bob on some document $m = (m_1 || m_2)$.

 $\boldsymbol{\sigma} = \operatorname{Sign}_{sk}(\boldsymbol{m})$

She want to reveal the first part m_1 of m to Carol, and convince her that it was signed by **Bob**, while keeping m_2 and σ secret.

 $L = \{m_1: \text{ there exists } m_2 \text{ and } \sigma \text{ such that } Vrfy_{pk}(m_1||m_2, \sigma) = yes \}$

L is in NP. So (in principle) Alice can do it!

Another example

Alice has a document (signed by some public authority) saying:

"Alice was born on **DD-MM-YYYY**".

She can now prove in zero-knowledge that she is at least **18** years old (without revealing her exact age)

There are many other examples!

For instance:

Alice can show that some message *m* was signed by **Bob** or by **Carol**,

without revealing which was the case.

etc...

Other applications of **ZK**

- a building block in some other protocols
- A recent application: Zcash a fully anonymous cryptocurrency (deployed in 2016)

 zero-knowledge identification (e.g. a Feige-Fiat-Shamir protocol, based on quadratic residues)

Example

We show a zero-knowledge proof that some **x** is a quadratic residue modulo **N**.

How does it work?

Similarly to the proof that two graphs are isomorphic!

Fact

For $a, b \in \mathbb{Z}_N^+$ we have

Main idea

Why is this a zero-knowledge proof system?

1. Completeness:

$$w^{2} = (u \cdot y^{i})^{2}$$
$$= u^{2} \cdot (y^{2})^{i}$$
$$= v \cdot x^{i}$$

2. Soundness: suppose that $\mathbf{x} \notin \mathbf{QR}_N$

Then

• if v is a QR_N then the cheating prover will be caught when i = 1 since we cannot have

$QR \cdot QNR = QR$

• if \boldsymbol{v} is a \mathbf{QNR}_N the cheating prover gets caught when $\boldsymbol{i} = \boldsymbol{0}$. So, the prover can cheat with probability at most 1/2 (in each iteration of the protocol).

3. Zero-knowledge (intuition)

The only information that the verifier gets is: $v := u^2$

and

This obviously gives him no information on **x**

•
$$w \coloneqq u$$
 if $i = 0$, or

•
$$w \coloneqq u \cdot y$$
 if $i = 1$.

This also gives him no information on **y**, since **y** is "encrypted" with **u**

Observation

In fact, the prover demonstrated not only that x in QR_N , but also that she knows the square root of x.

This is called a **zero-knowledge proof of knowledge**.

It can be defined formally!

Zero-knowledge public-key identification

The protocol on the previous slides can be used as a simple **zero-knowledge public-key identification scheme**:

- public key: *N*, *x*
- private key: **y** such that $y^2 = x \mod N$

It's extension is called a Feige-Fiat-Shamir protocol.

Is Shorr's protocol zeroknowledge proof of knowledge?

The situation

We have proven that the transcripts (I, r, s)

do not reveal any information about prover's secret **x**.

This is a **weaker** property than **zero-knowledge** (because the **verifier does not choose** *r*).

It is called an **honest verifier zero-knowledge**.

Schnorr's protocol is **<u>believed</u>** to be also **zero knowledge**, but nobody can prove it (from standard assumptions).

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.