
Lecture 11

Commitment Schemes and
Zero Knowledge

12.12.18 version 1.0

Stefan Dziembowski
www.crypto.edu.pl/Dziembowski

University of Warsaw

http://www.crypto.edu.pl/Dziembowski

Plan

1. Coin-flipping by telephone

2. Commitment schemes
1. definition

2. construction based on QRA

3. construction based on discrete log

4. construction based on PRG

3. Zero-knowledge (ZK)
1. motivation and definition

2. ZK protocol for graph isomorphism

3. ZK protocol for Hamiltonian cycles

4. applications

internet

Coin-flipping by telephone [Blum’81]

Suppose Alice and Bob are connected by a secure internet link:

privacy and authenticity is not a problem

The goal of Alice and Bob is to toss a coin.
In other words:
They want to execute some protocol 𝝅 in such a way that
at the end of the execution they both output the same bit 𝒙 distributed uniformly
over {𝟎, 𝟏}.

𝒙 𝒙

internet

How to define security? [1/2]

Let us just stay at an informal level...

𝒙 𝒙

From the point of view of Alice:

even if Bob is cheating (i.e.: he doesn’t follow the protocol):
if the protocol terminates successfully, then 𝒙 has a
uniform distribution

internet

How to define security? [2/2]

𝒙 𝒙

The same holds from the point of view of Bob

even if Alice is cheating (i.e.: he doesn’t follow the protocol):
if the protocol terminates successfully, then 𝒙 has a
uniform distribution

Note the difference
Unlike what we saw on the previous lectures:

the enemy can be one of the parties

(not an external entity)

A cheating party is sometimes called a corrupted
party, or a malicious party.

We will see many other examples of this later!

How to solve this problem?

Idea

Remember the old
game:

rock-paper-scissors?

draw
Alice
wins

Bob
wins

Bob
wins

draw
Alice
wins

Alice
wins

Bob
wins

draw

Alice

Bob

Let’s simplify this game

In other words: Alice wins iff 𝑨⊕𝑩 = 𝟎.

𝑨 = 𝟎 𝑨 = 𝟏

𝑩 = 𝟎
Alice
wins

Bob
wins

𝑩 = 𝟏
Bob
wins

Alice
wins

Alice

Bob

Another way to look at it

Bob
has an input B

Alice
has an input A

they should jointly compute
𝒙 = 𝑨⊕𝑩

(in a secure way)

What to do?

Problem:

𝑨 and 𝑩 should be sent at the same time

(e.g. if 𝑨 is sent before 𝑩 then a malicious Bob can
set 𝑩 ∶= 𝒙⊕ 𝑨, where 𝒙 is chosen by him).

𝒙 = 𝑨⊕𝑩 𝒙 = 𝑨⊕𝑩

random bit 𝑨

random bit 𝑩

How to prevent this?
Seems hard:

the internet is not synchronous...

A solution:

bit commitments

Plan

1. Coin-flipping by telephone

2. Commitment schemes
1. definition

2. construction based on QRA

3. construction based on discrete log

4. construction based on PRG

3. Zero-knowledge (ZK)
1. motivation and definition

2. ZK protocol for graph isomorphism

3. ZK protocol for Hamiltonian cycles

4. Applications

Commitment schemes – an intuition

Alice sends a locked box to Bob

a bit 𝒃

b

Alice can later send the key to Bob

𝒃

[binding] from now Alice cannot change 𝒃,
[hiding] but Bob doesn’t know 𝒃

Alice “commits
herself to 𝒃”

Alice “opens the
commitment”

Commitment schemes – a
functional definition

A commitment scheme is a protocol executed
between Alice and Bob consisting of two phases:
commit and open.

In the commit phase:
• Alice takes some input bit 𝒃.
• Bob takes no input.

In the open phase:
• Alice outputs nothing
• Bob outputs 𝒃, or error

Security requirements -
informally

[binding]
After the commit phase there exists at most one
value 𝒃 that can be open in the open phase.

[hiding]
As long as the open phase did not start Bob has
no information about 𝒃.

How to define security formally?

Not so trivial – remember that the parties can misbehave
arbitrarily.

We do not present a complete definition here.

(The hiding property can be defined using the
“indistinguishability” principle.)

The definition depends on some options.

1. What is the computational power of a cheating Alice?
2. What is the computational power of a cheating Bob?

The computational power of the adversary

Of course, to be formal we would need to introduce a
security parameter...

If a cheating Alice can be infinitely powerful, we say that
the protocol is unconditionally binding.

Otherwise it is computationally binding.

If a cheating Bob can be infinitely powerful, we say that
the protocol is unconditionally hiding.

Otherwise it is computationally hiding.

Unconditionally hiding and binding
commitment schemes do not exist

Proof (intuition)

a bit 𝒃

𝐜𝐨𝐦𝐦𝐢𝐭(𝒃)

There are two
options:
1. there exists a way

to open 𝟏 − 𝒃, or

2. there doesn’t exist
such a way

in this case “infinitely powerful”
Alice can cheat

in this case “infinitely powerful”
Bob can learn 𝒃

So, how does it solve the coin-
flipping problem?

chooses a random
bit 𝑨 ← {𝟎, 𝟏}

commits to 𝑨

sends 𝑩

chooses a random
bit 𝑩 ← {𝟎, 𝟏}

opens 𝑨

output
𝑨⊕𝑩

output
𝑨⊕𝑩

Problem

Alice can always refuse to send the last message.

This is unavoidable (there has to be the last
message in the protocol).

But they can use a convention:
if Alice didn’t send the last message – she lost!

Plan

1. Coin-flipping by telephone

2. Commitment schemes
1. definition

2. construction based on QRA

3. construction based on discrete log

4. construction based on PRG

3. Zero-knowledge (ZK)
1. motivation and definition

2. ZK protocol for graph isomorphism

3. ZK protocol for Hamiltonian cycles

4. Applications

Remember quadratic residues
modulo an RSA modulus?

𝐐𝐑𝑵 = {𝒙𝟐 𝐦𝐨𝐝 𝑵: 𝒙 ∈ 𝒁𝑵
∗ }

Fact: For 𝑵 = 𝒑𝒒 we have |𝐐𝐑𝑵| = |𝒁𝑵
∗ | / 𝟒.

𝐐𝐑𝒑

𝐐𝐑𝒒

𝒁𝑵
∗ :

𝐦𝐨𝐝 𝒒

𝐦𝐨𝐝 𝒑

𝐐𝐑𝑵

Jacobi Symbol

𝐐𝐑𝒑

𝐐𝐑𝒒

𝐦𝐨𝐝 𝒒

𝐦𝐨𝐝 𝒑

𝐐𝐑𝑵

for 𝑵 = 𝒑𝒒 define 𝑱𝑵(𝒙):= 𝑱𝒑(𝒙) · 𝑱𝒒(𝒙)

+𝟏 if 𝒙 ∈ 𝐐𝐑𝒑for any prime 𝒑 define 𝑱𝒑(𝒙) ∶= −𝟏 otherwise

+1 -1

-1 +1

𝑱𝑵(𝒙) ∶=

𝒁𝑵
+: = {𝒙 ∈ 𝒁𝑵

∗ : 𝑱𝑵(𝒙) = +𝟏}

Jacobi symbol can be computed efficiently!
(even in 𝒑 and 𝒒 are unknown)

It is a subgroup of 𝒁𝑵
∗

Quadratic Residuosity Assumption

𝐐𝐑𝒑

𝐐𝐑𝒒

𝒁𝑵
∗ :

Quadratic Residuosity Assumption (QRA):
For a random 𝒂 ← 𝒁𝑵

+ it is computationally hard
to determine if 𝒂 ∈ 𝐐𝐑𝑵.
Formally: for every polynomial-time
probabilistic algorithm 𝑫 the value:

𝑷 𝑫 𝑵, 𝒂 = 𝑸𝑵 𝒂 –
𝟏

𝟐

(where 𝒂 ← 𝒁𝑵
+) is negligible.

𝐐𝐍𝐑𝒑

𝐐𝐍𝐑𝒑 ?
𝒂 ← 𝒁𝑵

+

↓

𝐐𝐑𝑵

Where a predicate
𝑸𝑵: 𝒁𝑵

+ → {𝟎, 𝟏} is
defined as follows:
𝑸𝑵(𝒂) = 𝟏 if 𝒂 ∈ 𝐐𝐑𝑵

𝑸𝑵(𝒂) = 𝟎 otherwise

A construction based on QRA

select a random RSA modulus 𝑵 = 𝒑𝒒.

Let

a bit b

𝒙 :=
a random 𝐐𝐑𝑵 if 𝒃 = 𝟏

a random 𝒁𝑵
+ ∖ 𝐐𝐑𝑵 if 𝒃 = 𝟎

to commit to 𝒃 sends(𝑵, 𝒙)

to open a commitment send (𝒑, 𝒒).

if 𝑵 ≠ 𝒑𝒒.
then output error

Otherwise output
𝑸𝑵(𝒙)

This commitment scheme is
unconditionally binding

Why?

Suppose Alice has sent (𝑵, 𝒙) to Bob.

What can Bob output at the end of the opening phase?

There exists the following options:
• 𝑵 is not an RSA modulus – in this case Bob will always output

error,
• 𝒙 ∈ 𝐐𝐑𝑵– in this case Bob can only output 𝟎 or error,
• 𝒙 ∉ 𝐐𝐑𝑵– in this case Bob can only output 𝟏 or error.

This commitment scheme is
computationally hiding, assuming
QRA holds

Proof (intuition)

To distinguish between 𝒃 = 𝟎 and 𝒃 = 𝟏 a malicious
Bob would need to distinguish 𝐐𝐑𝑵 from the other
elements of 𝒁𝑵

∗ ...

Plan

1. Coin-flipping by telephone

2. Commitment schemes
1. definition

2. construction based on QRA

3. construction based on discrete log

4. construction based on PRG

3. Zero-knowledge (ZK)
1. motivation and definition

2. ZK protocol for graph isomorphism

3. ZK protocol for Hamiltonian cycles

4. applications

A construction based on discrete log

a bit 𝒃

check if 𝒑 is prime and
𝒈 and 𝒔 are in 𝐐𝐑𝒑

select a random
𝒚 ← 𝒁(𝒑−𝟏)/𝟐

Let

𝒙 :=
𝒈𝒚 if 𝒃 = 𝟎

𝒔 · 𝒈𝒚 if 𝒃 = 𝟏

Select
𝒑 – a random prime,
𝒈 – a generator of 𝐐𝐑𝒑

𝒔 – a random element of 𝐐𝐑𝒑

to commit to 𝒃 send 𝒙

to open a commitment send 𝒚. if 𝒙 = 𝒈𝒚 output 𝒃 = 𝟎
if 𝒙 = 𝒔 · 𝒈𝒚 output 𝒃 = 𝟏

𝒑, 𝒈, 𝒔

This commitment scheme is
computationally binding, assuming that
the discrete log is hard in 𝐐𝐑𝒑

Proof (intuition)

To be able to open the commitment in two ways, a
cheating Alice needs to know 𝒚 and 𝒚′ such that
there exists 𝒙 such that

𝒈𝒚 = 𝒙 = 𝒔 · 𝒈𝒚′

But this means that 𝒈𝒚−𝒚′ = 𝒔. So, she would know
the discrete log of 𝒔.

This commitment scheme is
unconditionally hiding

Why?

Because 𝒙 is just a random element of 𝐐𝐑𝑵.

Plan

1. Coin-flipping by telephone

2. Commitment schemes
1. definition

2. construction based on QRA

3. construction based on discrete log

4. construction based on PRG

3. Zero-knowledge (ZK)
1. motivation and definition

2. ZK protocol for graph isomorphism

3. ZK protocol for Hamiltonian cycles

4. applications

A construction based on PRGs [Naor’91]

a bit 𝒃

𝑿

𝑮: {𝟎, 𝟏}𝑳 → {𝟎, 𝟏}𝟑𝑳 a PRG

select a random string
𝑿 ← 𝟎, 𝟏 𝟑𝑳

select a random string
𝒁 ← 𝟎, 𝟏 𝑳

and let

𝒀 :=
𝑮 𝒁 ⊕𝑿 if 𝒃 = 𝟎

𝑮(𝒁) if 𝒃 = 𝟏

to open a commitment send 𝒁. if 𝒀 = 𝑮 𝒁 ⊕𝑿 output 𝒃 = 𝟎
if 𝒀 = 𝑮(𝒁) output 𝒃 = 𝟏

to commit to 𝒃 send 𝒀

This commitment scheme is unconditionally
binding
Proof (intuition)

How many 𝑿’s have the property that
there exist 𝒁 and 𝒁’ such that 𝑮 𝒁 ⊕ 𝑮(𝒁’) = 𝑿?

By the counting argument: at most 𝟐𝑳
𝟐
= 𝟐𝟐𝑳.

Therefore, the probability that a random 𝑿 ∈ 𝟎, 𝟏 𝟑𝑳 has this
property is at most

𝟐𝟐𝑳

𝟐𝟑𝑳
= 𝟐−𝑳.

QED

To be able to open the commitment in two ways, a cheating Alice
needs to find 𝒁 and 𝒁’ such that there exists 𝒀 such that:

𝑮 𝒁 ⊕𝑿 = 𝒀 = 𝑮(𝒁’)
This means that 𝑮 𝒁 ⊕ 𝑮(𝒁’) = 𝑿.

This commitment scheme is
computationally hiding, assuming G
is a secure PRG

Why?

Obviously, if, instead of 𝑮(𝒁) Alice uses a completely
random string 𝑹, then the scheme is secure against a
cheating Bob.

If a scheme behaved differently with 𝑹 and with 𝑮(𝒁),
then a cheating Bob could be used as a distinguisher
for 𝑮.

Moral

Commitment schemes are a part of Minicrypt!

one-way functions
exist

commitment schemes
exist

this can also be shown

String commitment

How to commit to a longer string 𝒙 = (𝒙𝟏, … , 𝒙𝒏)?

Just commit to every 𝒙𝒊 separately.

To open the commitment, open each commitment to 𝒙𝒊.

(Bob accepts only if all the openings were ok)

Plan

1. Coin-flipping by telephone

2. Commitment schemes
1. definition

2. construction based on QRA

3. construction based on discrete log

4. construction based on PRG

3. Zero-knowledge (ZK)
1. motivation and definition

2. ZK protocol for graph isomorphism

3. ZK protocol for Hamiltonian cycles

4. applications

Zero-knowledge (ZK)
We will now talk about the zero-knowledge proofs.

Informally:
A proof of some statement 𝝋 is zero-knowledge, if it doesn’t
reveal any information (besides the fact that 𝝋 holds).

Introduced in:
[Shafi Goldwasser, Silvio Micali, Charles Rackoff: The Knowledge Complexity of
Interactive Proof-Systems, STOC 1985, SIAM J. Comput. 1989]

S. Goldwasser S. Micali C. Rackoff

Turing Award
in 2012

A motivating example: public-key
identification (see: the last lecture)

𝒑𝒌

𝒔𝒌

Everybody the knows 𝒑𝒌 can
verify the identity of Alice

(𝒑𝒌, 𝒔𝒌) – a (public key, private key)
pair of Alice

Take a random
message 𝒎

𝒄 ∶= 𝐄𝐧𝐜(𝒑𝒌,𝒎)

𝒎′ ≔ 𝐃𝐞𝐜(𝒔𝒌, 𝒄)

Check if
𝒎 = 𝒎’

verifier

(𝐄𝐧𝐜,𝐃𝐞𝐜) – a public key encryption scheme

Alice

Is it secure against actively
cheating verifier?

malicious
verifier

can ask arbitrary queries

Alice acts as a decryption oracle!
(so the verifier learns something that he didn’t know)

is it a problem? – depends on the application

If the verifier follows the protocol – he doesn’t learn anything that
he didn’t know before (he already knows 𝒎).

To impersonate Alice one needs to be able to decrypt 𝒄 without
the knowledge of 𝒎.

So is it secure?

(we didn’t define security, so this is just an informal question)

What does the verifier learn about 𝒔𝒌?

But what if the verifier is malicious?

A question

Is it possible to design a protocol where

• a verifier learns nothing,

• besides of the fact that he is talking to Alice?

𝒎’ ∶= 𝐃𝐞𝐜(𝒔𝒌, 𝒄)

A new variant of the protocol

𝒑𝒌

𝒔𝒌

(𝒑𝒌, 𝒔𝒌) – a (public key, private key) pair of Alice

Take a random
message 𝒎

𝒄 ≔ 𝐄𝐧𝐜(𝒑𝒌,𝒎)

commit to 𝒎′ ≔ 𝐃𝐞𝐜(𝒔𝒌, 𝒄)

check if
𝒎 = 𝒎′

verifier

𝒎

open the commitment to 𝒎′

abort if
𝒎 ≠ 𝒎′

Can a malicious verifier learn
something from this protocol?

Intuition:

No, because he

doesn’t learn 𝒎′

(he already knows 𝒎′).

Can this be proven formaly?

Yes!

But we first need to

define what it means that
“the verifier learns nothing”.

This will lead us to the concept of
zero knowledge

The general picture

𝑳 – some language (usually not in 𝑷)

verifierprover

𝒙 ∈ 𝑳

I am convinced!

the prover is infinitely
powerful

Two main properties:
1. soundness
2. zero-knowledge

the verifier is poly-
time

𝒙 ∈ 𝑳

Soundness - informally

A cheating prover cannot convince the verifier that
𝒙 ∈ 𝑳

if it is not true

(negligible error probability is allowed)

verifierprover

𝒙 ∉ 𝑳

It’s not true!

𝒙 ∉ 𝑳

Zero Knowledge

The only thing that the verifier should learn is that 𝒙 ∈ 𝑳

verifierprover

𝒙 ∈ 𝑳

verifier

is 𝒙 ∈ 𝑳 ?

YES!

This should hold even if the verifier doesn’t follow the protocol.

(again: we allow some negligible error)

An example of a protocol that is not
Zero Knowledge
𝑳 – some NP-complete language

verifierprover

𝒙 ∈ 𝑳 𝒙 ∈ 𝑳

finds an
NP-witness 𝒘 for 𝒙

𝒘 can verify if 𝒙 ∈ 𝑳

Why it is not ZK?
Because the verifier learned 𝒘

we will also call it a
“statement”

Notation

Suppose we are given a protocol consisting of two
randomized machines 𝑷 and 𝑽.

Suppose 𝑷 and 𝑽 take some common input 𝒙, and then 𝑽
outputs yes or no.

We say that (𝑷, 𝑽) accepts 𝒙 if 𝑽 outputs yes. Otherwise
we say that it rejects 𝒙.

𝐕𝐢𝐞𝐰(𝑷, 𝑽, 𝒙) – a random variable denoting the “view of
𝑽”, i.e.:
1. the random input of 𝑽 and the input 𝒙,
2. the transcript of the communication.

Zero-knowledge proofs

A pair (𝑷, 𝑽) is a zero-knowledge proof system for 𝑳 if
it satisfies the following conditions:

• 𝑷 has an infinite computing power and 𝑽 is poly-time.

• Completeness: If 𝒙 ∈ 𝑳, then the probability that
(𝑷, 𝑽) rejects 𝒙 is negligible in the length of 𝒙.

• Soundness: If 𝒙 ∉ 𝑳 then for any prover 𝑷∗, the
probability that (𝑷∗, 𝑽) accepts 𝒙 is negligible in the
length of 𝒙.

• Zero-Knowledge: “a cheating 𝑽 should not learn
anything besides of the fact that 𝒙 ∈ 𝑳”

How to define it formally?

“a cheating 𝑽 should not learn anything
besides of the fact that 𝒙 ∈ 𝑳”

Definition (main idea)

For every (even malicious) poly-time 𝑽∗ there exists an
(expected) poly-time machine 𝑺 such that

𝐕𝐢𝐞𝐰 𝑷, 𝑽∗, 𝒙 𝒙∈𝑳 is
“indistinguishable from” 𝑺 𝒙 𝒙∈𝑳

we will formalize it in a moment

“What a cheating 𝑽 can learn can be
simulated without interacting with 𝑷”

The idea of simulation

prover

𝒙 ∈ 𝑳 ∀ ∃
simulator 𝑺

𝒙 ∈ 𝑳

view of the
malicious

verifier

view of the
simulator≈

∀
𝒙 ∈ 𝑳

Indistinguishability

Let 𝜶 = 𝑨 𝒙 𝒙∈𝑳 and 𝜷 = 𝑩 𝒙 𝒙∈𝑳 be two sets of
distributions.

𝜶 and 𝜷 are computationally indistinguishable if for every
poly-time 𝑫 there exists a negligible function 𝜺 such that for
every 𝒙 ∈ 𝑳

𝑷 𝑫 𝒙, 𝑨 𝒙 = 𝟏 − 𝑷 𝑫 𝒙,𝑩 𝒙 = 𝟏 ≤ 𝜺(𝒙) (∗)

𝜶 and 𝜷 are statistically indistinguishable if (∗) holds also for
infinitely powerful 𝑫.

𝜶 and 𝜷 are perfectly indistinguishable if (∗) holds also for
infinitely powerful 𝑫, and 𝜺 = 𝟎.

“a cheating 𝑽 should not learn
anything besides of the fact that 𝒙 ∈ 𝑳”

Definition (a bit more formally)
For every (even malicious) poly-time 𝑽∗ there exists an
(expected) poly-time machine 𝑺 such that

𝐕𝐢𝐞𝐰 𝑷, 𝑽∗, 𝒙 𝒙∈𝑳

is computationally indistinguishable from 𝑺 𝒙 𝒙∈𝑳

This is a definition of a computational zero-knowledge.

By changing the “computational indistinguishability” into
• “statistical indistinguishability” we get a statistical zero-

knowledge
• “perfect indistinguishability” we get a perfect zero-

knowledge

Plan

1. Coin-flipping by telephone

2. Commitment schemes
1. definition

2. construction based on QRA

3. construction based on discrete log

4. construction based on PRG

3. Zero-knowledge (ZK)
1. motivation and definition

2. ZK protocol for graph isomorphism

3. ZK protocol for Hamiltonian cycles

4. applications

Example

Graph isomorphism
A graph is a pair (𝑽, 𝑬), where 𝑬 is a binary symmetric relation on 𝑽.

A graph isomorphism between (𝑽, 𝑬) and 𝑽′, 𝑬′ is a function:

𝝋 ∶ 𝑽 → 𝑽′

such that

𝒆𝟏, 𝒆𝟐 ∈ 𝑽 iff 𝝋 𝒆𝟏 , 𝝋 𝒆𝟐 ∈ 𝑽′

Graphs 𝑮 and 𝑯 are isomorphic if there exists an isomorphism between
them.

isomorphism:

𝒇(𝒂) = 𝟏
f 𝒃 = 𝟔
𝒇(𝒄) = 𝟖
𝒇(𝒅) = 𝟑
𝒇(𝒈) = 𝟓
𝒇(𝒉) = 𝟐
𝒇(𝒊) = 𝟒
𝒇(𝒋) = 𝟕

© Wikipedia

No poly-time algorithm for the graph isomorphism
problem is known.

Hardness of graph isomorphism

Without loss of generality we will consider only
isomorphism between (𝑽, 𝑬) and 𝑽′, 𝑬′ , where

𝑽 = 𝑽′ = {𝟏,… , 𝒏} (for some 𝒏).

That is, a bijection:
𝝋 ∶ 𝑽 → 𝑽′

is a permutation of the set {𝟏, … , 𝒏}.

A zero knowledge proof of graph
isomorphism – a wrong solution

verifier
prover

statement
graphs 𝑮𝟎 and 𝑮𝟏 are

isomorphic

𝝋computes the
isomorphism
𝝋 between
𝑮𝟎 and 𝑮𝟏

checks if 𝝋 is
an

isomorphism
between
𝑮𝟎 and 𝑮𝟏

Notation

If 𝑮 = (𝑽, 𝑬) is a graph, and

𝝅: 𝑽 → 𝑽 is a permutation

then by 𝝅(𝑮) we mean a graph

𝑮′ = 𝑽′, 𝑬′

where

𝒂, 𝒃 ∈ 𝑬 iff 𝝅 𝒂 , 𝝅 𝒃 ∈ 𝑬′

A fact

𝑮

𝝅(𝑮)
𝝅

𝚪 - a class of all graphs
isomorphic to 𝑮

a set of all graphs with
vertices in some set 𝑽

If 𝝅 is a random
permutation

some graph 𝑮

then 𝝅(𝑮) is a random
element of 𝚪

A zero knowledge proof of graph isomorphism

verifier
prover

statement
graphs 𝑮𝟎 and 𝑮𝟏 are isomorphic

𝑯 ∶= 𝝅(𝑮𝟏)selects a
random

permutation
𝝅

a random 𝒊 ∈ {𝟎, 𝟏}

an isomorphism between 𝑯 and 𝑮𝒊

Note:
Prover does not need to be infinitely

powerful, if he knows the isomorphism
isomorphism𝝋 between 𝑮𝟎 and 𝑮𝒊.

• if 𝒊 = 𝟏 then he just sends 𝝅
• if 𝒊 = 𝟎 then he sends 𝝅 · 𝝋

𝑮𝟏𝑮𝟎

𝑯

𝝋

iterate 𝒏 times:

accepts only
if the answer

is correct

Why is this a zero-knowledge proof system?

• Completeness: trivial

• Soundness:
Suppose 𝑮𝟎and 𝑮𝟏are not
isomorphic

Then, at least one of the following
has to hold:
• 𝑮𝟎and 𝑯 are not isomorphic
• 𝑯 and 𝑮𝟏are not isomorphic

probability that a
verifier rejects is at

least 𝟏/𝟐.

Since the protocol is repeated 𝒏 times, the probability that

the verifier rejects is at least 𝟏 −
𝟏

𝟐

𝒏
.

Setting 𝒏 ∶= |𝑮𝟎| + |𝑮𝟏| we are done!

𝑮𝟏𝑮𝟎

𝑯

𝝋

The only thing that verifier learns is:

• a permutation between 𝑯 and 𝑮𝟎 or 𝑮𝟏

where
• graph 𝑯 is random graph isomorphic to 𝑮𝟎

(and isomorphic to 𝑮𝟏).

Zero-knowledge?

(In fact: we can show that this is a perfect zero knowledge
proof system.)

Intuitively, the zero-knowledge property comes from the fact
that:

More formally

there exists an (expected) poly-time

For every poly-time

malicious
verifier 𝑽∗

such that
𝐕𝐢𝐞𝐰 𝑷, 𝑽∗, 𝒙 𝒙∈𝑳

is perfectly indistinguishable from 𝑺 𝒙 𝒙∈𝑳

simulator 𝑺

malicious verifier
𝑽∗

simulator 𝑺

statement: graphs 𝑮𝟎 and 𝑮𝟏 are isomorphic

𝑮𝟎 and 𝑮𝟏

𝑯 ∶= 𝝅(𝑮𝒄)
select a
random

permutation
𝝅

and a bit 𝒄

𝒊 ∈ {𝟎, 𝟏}

if 𝒊 = 𝒄 send an isomorphism
between 𝑯 and 𝑮𝒊

output
the

view of
𝑽∗

The running time

First, observe, that the distribution of 𝑯 doesn’t
depend on 𝒄 (since it is uniform in the class of graphs
isomorphic with 𝑮𝟎 and 𝑮𝟏)

Therefore the probability that 𝑺 needs to restart 𝑽∗ is
equal to 𝟏/𝟐.

So the expected number of restarts is 𝟐.

Therefore, the running time is (expected) polynomial
time.

Indistinguishability of the
distributions

Suppose 𝒊 = 𝒄, and hence we didn’t
restart.

In this case, the simulator simply
simulated “perfectly” execution of 𝑽∗

against 𝑷.

𝑯 ∶= 𝝅(𝑮𝒊)

a random 𝒊 ∈ {𝟎, 𝟏}

an isomorphism
between 𝑯 and 𝑮𝒊

uniform in the
class of graphs

isomorphic
with 𝑮𝟎 and 𝑮𝟏

QED

Plan

1. Coin-flipping by telephone

2. Commitment schemes
1. definition

2. construction based on QRA

3. construction based on discrete log

4. construction based on PRG

3. Zero-knowledge (ZK)
1. motivation and definition

2. ZK protocol for graph isomorphism

3. ZK protocol for Hamiltonian cycles

4. applications

What is provable in NP?
Theorem [Goldreich, Micali, Wigderson, 1986]

Assume that the one-way functions exist.

Then, every language 𝑳 ∈ 𝐍𝐏 has a computational zero-
knowledge proof system.

How to prove it?
It is enough to show it for

one NP-complete problem!

Take the following NP-complete
problem: Hamiltonian graphs

Hamiltonian graph – a graph that has a Hamiltonian
cycle

𝑳 ∶= {𝑮 ∶ 𝑮 𝐢𝐬 𝐇𝐚𝐦𝐢𝐥𝐭𝐨𝐧𝐢𝐚𝐧}

Example of a Hamiltonian cycle:

How to construct a ZK proof
that a graph 𝑮 is Hamiltonian?
Of course:

sending the Hamiltonian cycle in a graph 𝑮 to the
verifier doesn’t work.

Idea:
We permute the graph 𝑮 randomly – let 𝑯 be the permuted
graph.
Then we prove that
1. 𝑯 is Hamiltonian,
2. 𝑯 is a permutation of 𝑮.

𝑯 is Hamiltonian
iff

𝑮 is Hamiltonian

The first idea:

verifier

prover

statement
graph 𝑮 is Hamiltonian

chooses a
random

permutation 𝝅
and sets
𝑯 ≔ 𝝅(𝑮)

random bit 𝒊 ∈ {𝟎, 𝟏}

if 𝒊 = 𝟎 sends 𝝅
otherwise sends a

Hamiltonian cycle in 𝑯

Problem: Prover can choose his response depending on 𝒊.

How to commit to a graph?
Represent it as an adjacency matrix,

and commit to each bit in the matrix separately.

How to commit to a permutation of a graph?
Represent it as a string

Assume the vertices of the graph are natural numbers {𝟏,… , 𝒏}.

Solution: use commitments
Remember, that we assumed that the one-way functions
exist, so we are “allowed” to use commitments!

Example

C

B

ED

A
A B C D E

A 0 1 1 1 0

B 1 0 1 0 1

C 1 1 0 1 1

D 1 0 1 0 1

E 0 1 1 1 0

𝑴 = 𝑴𝒊𝒋 𝒊,𝒋∈{𝑨,…,𝑩}graph 𝑯:

to commit to 𝑯:
for 𝒊 = 𝑨,… , 𝑬

for 𝒋 = 𝑨,… , 𝑬 𝐂𝐨𝐦𝐦𝐢𝐭(𝑴𝒊𝒋)

prover

statement: graph 𝑮 is Hamiltonian

chooses a
random

permutation 𝝅
and sets

𝑯 ∶= 𝝅(𝑮)

random bit 𝒊 ∈ {𝟎, 𝟏}

commit to 𝝅
commit to every bit 𝑴𝒊𝒋

iterate 𝒏 times:

if 𝒊 = 𝟎:

open all the commitments
check if

everything
was done
correctly

if 𝒊 = 𝟏: open only the
commitments to the

edges that represent a
Hamiltonian cycle in 𝑯

check if it is
indeed a

Hamiltonian
cycle

verifier

verifier accepts only if all commitments were open correctly and all checks are ok

Example of a Hamiltonian graph

A B C D E

A 0 1 1 1 0

B 1 0 1 0 1

C 1 1 0 1 1

D 1 0 1 0 1

E 0 1 1 1 0

C

B

ED

A
1 2

3

4

5

1

2

2

3

3

4

4

5

5

1

Example of a “permuted graph”

𝝅(𝑩) 𝝅(𝑪) 𝝅(𝑫) 𝝅(𝑬) 𝝅(𝑨)

𝝅(𝑩) 0 1 0 1 1

𝝅(𝑪) 1 0 1 1 1

𝝅(𝑫) 0 1 0 1 1

𝝅(𝑬) 1 1 1 0 0

𝝅(𝑨) 1 1 1 0 0

A B C D E

A 0 1 1 1 0

B 1 0 1 0 1

C 1 1 0 1 1

D 1 0 1 0 1

E 0 1 1 1 0

Case 𝟎:
open everything but don’t show the Hamiltonian cycle

𝝅 𝑨 = 𝑬,𝝅 𝑩 = 𝑨,𝝅 𝑪 = 𝑩,𝝅 𝑫 = 𝑪,𝝅 𝑬 = 𝑫

𝝅

Case 𝟏

Open only the Hamiltonian cycle

𝝅(𝑩) 𝝅(𝑪) 𝝅(𝑫) 𝝅(𝑬) 𝝅(𝑨)

𝝅(𝑩) 0 1 0 1 1

𝝅(𝑪) 1 0 1 1 1

𝝅(𝑫) 0 1 0 1 1

𝝅(𝑬) 1 1 1 0 0

𝝅(𝑨) 1 1 1 0 0

1

1

1

1

1

Why is it a ZK proof?

Completeness: trivial
Soundness: If 𝑮 is not Hamiltonian, then either

𝑯 is not Hamiltonian or 𝝅 is not a permutation.

Therefore, to cheat with probability higher than 𝟏/𝟐 the
prover needs to break the binding property of the
commitment scheme.

If we use the commitment scheme of Naor, this probability is
negligible, even against an infinitely-powerful adversary

Since the protocol is repeated 𝒏 times, the probability that the
verifier rejects is at least

𝟏 −
𝟏

𝟐

𝒏
.

Zero-Knowledge - intuition

“a cheating 𝑽 should not learn anything besides of
the fact that 𝒙 ∈ 𝑳”

𝑷 “opens everything”, so
𝑽 just learns a randomly
permuted graph 𝑮.

𝑷 “opens only the Hamiltonian
cycle”, so 𝑽 just learns a
randomly permuted cycle of
vertices

Note, that this gives us only computational indistinguishability.
This is because the commitment scheme is only computationally
binding.

Observation

The honest prover doesn’t need to be infinitely
powerful, if he receives the NP-witness as an
additional input!

Corollary

“Everything that is provable is provable in Zero
Knowledge!”

Plan
1. Coin-flipping by telephone

2. Commitment schemes
1. definition

2. construction based on QRA

3. construction based on discrete log

4. construction based on PRG

3. Zero-knowledge (ZK)
1. motivation and definition

2. ZK protocol for graph isomorphism

3. ZK protocol for Hamiltonian cycles

4. applications

Example

Suppose, Alice knows a signature 𝝈 of Bob on some document 𝒎 =
(𝒎𝟏||𝒎𝟐).

𝝈 = 𝐒𝐢𝐠𝐧𝒔𝒌(𝒎)

She want to reveal the first part 𝒎𝟏of 𝒎 to Carol, and convince her
that it was signed by Bob, while keeping 𝒎𝟐 and 𝝈 secret.

𝑳 = {𝒎𝟏: there exists 𝒎𝟐 and 𝝈 such that 𝐕𝐫𝐟𝐲𝒑𝒌(𝒎𝟏||𝒎𝟐, 𝝈) = 𝐲𝐞𝐬}

𝑳 is in 𝐍𝐏. So (in principle) Alice can do it!

Another example

Alice has a document (signed by some public
authority) saying:

“Alice was born on DD-MM-YYYY”.

She can now prove in zero-knowledge that

she is at least 𝟏𝟖 years old (without revealing her
exact age)

There are many other examples!

For instance:

Alice can show that some message 𝒎 was signed
by Bob or by Carol,

without revealing which was the case.

etc...

Other applications of ZK

• a building block in some other protocols

• A recent application: Zcash – a fully
anonymous cryptocurrency (deployed in
2016)

• zero-knowledge identification (e.g. a Feige-
Fiat-Shamir protocol, based on quadratic
residues)

Example

We show a zero-knowledge proof that some 𝒙 is a
quadratic residue modulo 𝑵.

How does it work?

Similarly to the proof that two graphs are
isomorphic!

Fact

For 𝒂, 𝒃 ∈ 𝒁𝑵
+ we have

• 𝒂 ∈ 𝐐𝐑𝑵 and 𝒃 ∈ 𝐐𝐑𝑵

or
• 𝒂 ∉ 𝑸𝑹𝑵 or 𝒃 ∉ 𝐐𝐑𝑵

𝒂 ⋅ 𝒃 ∈ 𝐐𝐑𝑵

iff

Main idea

𝒗 is a QR 𝒗 · 𝒙 is a QR

𝒙 is a QR

𝑮𝟎 is isomorphic with 𝑯

𝑮𝟎 is isomorphic with 𝑮𝟏

𝑯 is isomorphic with 𝑮𝟏

RSA modulus 𝑵,
statement: 𝒙 ∈ 𝒁𝑵

+ in 𝐐𝐑𝑵

iterate 𝒏 times:

𝒚 such that
𝒚𝟐 = 𝒙𝐦𝐨𝐝 𝑵

chose a
random
𝒖 ← 𝒁𝑵

∗

𝒗 ≔ 𝒖𝟐𝐦𝐨𝐝 𝑵

random bit 𝒊 ← {𝟎, 𝟏}

𝒘 ∶= 𝒖 ⋅ 𝒚𝒊𝐦𝐨𝐝 𝑵

accept if
𝒘𝟐 = 𝒗 · 𝒙𝒊(𝐦𝐨𝐝 𝑵)= 𝒖 if 𝒊 = 𝟎

= 𝒖 ⋅ 𝒚 if 𝒊 = 𝟏

1. Completeness:

Why is this a zero-knowledge proof system?

𝒚 such that
𝒚𝟐 = 𝒙𝐦𝐨𝐝 𝑵

chose a random
𝒖 ← 𝒁𝑵

∗ 𝒗 ≔ 𝒖𝟐𝐦𝐨𝐝 𝑵

random bit 𝒊 ← {𝟎, 𝟏}

𝒘 ∶= 𝒖 ⋅ 𝒚𝒊𝐦𝐨𝐝 𝑵
accept if

𝒘𝟐 = 𝒗 · 𝒙𝒊(𝐦𝐨𝐝 𝑵)

𝒘𝟐 = 𝒖 ⋅ 𝒚𝒊
𝟐

= 𝒖𝟐 ⋅ 𝒚𝟐
𝒊

= 𝒗 ⋅ 𝒙𝒊

2. Soundness: suppose that 𝐱 ∉ 𝐐𝐑𝑵

Then

• if 𝒗 is a 𝐐𝐑𝑵 then the cheating prover will be caught when 𝒊 = 𝟏
since we cannot have

QR · QNR = QR

• if 𝒗 is a 𝐐𝐍𝐑𝑵 the cheating prover gets caught when 𝒊 = 𝟎.

So, the prover can cheat with probability at most 𝟏/𝟐 (in each
iteration of the protocol).

𝒚 such that
𝒚𝟐 = 𝒙𝐦𝐨𝐝 𝑵

chose a random
𝒖 ← 𝒁𝑵

∗ 𝒗 ≔ 𝒖𝟐𝐦𝐨𝐝 𝑵

random bit 𝒊 ← {𝟎, 𝟏}

𝒘 ∶= 𝒖 ⋅ 𝒚𝒊𝐦𝐨𝐝 𝑵
accept if

𝒘𝟐 = 𝒗 · 𝒙𝒊(𝐦𝐨𝐝 𝑵)

3. Zero-knowledge (intuition)

The only information that the verifier gets is:
𝒗 ∶= 𝒖𝟐

and

• 𝒘 ≔ 𝒖 if 𝒊 = 𝟎, or

• 𝒘 ≔ 𝒖 · 𝒚 if 𝒊 = 𝟏.

This obviously gives him
no information on 𝒙

This also gives him no information
on 𝒚, since 𝒚 is “encrypted” with 𝒖

𝒚 such that
𝒚𝟐 = 𝒙𝐦𝐨𝐝 𝑵

chose a random
𝒖 ← 𝒁𝑵

∗ 𝒗 ≔ 𝒖𝟐𝐦𝐨𝐝 𝑵

random bit 𝒊 ← {𝟎, 𝟏}

𝒘 ∶= 𝒖 ⋅ 𝒚𝒊𝐦𝐨𝐝 𝑵
accept if

𝒘𝟐 = 𝒗 · 𝒙𝒊(𝐦𝐨𝐝 𝑵)

In fact, the prover demonstrated not only that 𝒙 in 𝐐𝐑𝑵,
but also that she knows the square root of 𝒙.

This is called a zero-knowledge proof of knowledge.

Observation

It can be defined formally!

Zero-knowledge public-key
identification

The protocol on the previous slides can be used as a
simple zero-knowledge public-key identification
scheme:

• public key: 𝑵, 𝒙

• private key: 𝒚 such that 𝒚𝟐 = 𝒙𝐦𝐨𝐝 𝑵

It’s extension is called a Feige-Fiat-Shamir protocol.

Is Shorr’s protocol zero-
knowledge proof of knowledge?

From last lecture:

verifierprover

knows
𝒚 ∶= 𝒈𝒙

knows 𝒙

𝒌 ← 𝒁𝒒
𝑰 ≔ 𝒈𝒌

𝑮 – group, 𝒒 = |𝑮|
𝒈 – generator

𝑰
𝒓 ← 𝒁𝒒

𝒓

𝒔 ≔ 𝒓𝒙 + 𝒌𝐦𝐨𝐝 𝒒

𝒔 output yes iff
𝒈𝒔 ⋅ 𝒚−𝒓 = 𝑰

The situation

We have proven that the transcripts
(𝑰, 𝒓, 𝒔)

do not reveal any information about prover’s secret 𝒙.

This is a weaker property than zero-knowledge (because
the verifier does not choose 𝒓).

It is called an honest verifier zero-knowledge.

Schnorr’s protocol is believed to be also zero knowledge,
but nobody can prove it (from standard assumptions).

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or
all of this material is currently granted without fee provided that copies are made
only for personal or classroom use, are not distributed for profit or commercial
advantage, and that new copies bear this notice and the full citation.

