Cryptography for Computer Scientists 2018/19

Oct 10, 2018

MIM UW

Exercises 2

 $Stefan \ Dziembowski$

Exercise 1: Semantically-secure encryption implies that $P \neq NP$

Prove that if semantically-secure encryption exists then $P \neq NP$.

Exercise 2: One-way functions

Let f and g be one-way functions that are *length preserving*, i.e., for every $x \in \{0, 1\}^*$ we have that |f(x)| = |g(x)| = |x|. For h_i 's defined as below decide if they are one-way functions (if the answer is "yes" then give a proof, and otherwise provide a counterexample).

1.
$$h_1(x) := f(x) \oplus g(x),$$

- 2. $h_2(x_1||x_2) = f(x_1)||g(x_2)$ (where $|x_1| = |x_2|$),
- 3. $h_3(x) = f(x)||g(x)|$, and

4.
$$h_4(x) := f(g(x)).$$

Exercise 3: PRG output extension

Let G be a pseudorandom generator that extends its input by one bit (i.e. it has expansion factor ℓ' such that $\ell'(n) = n + 1$). Let ℓ be any polynomial such that for every $n \in \mathbb{N}$ we have $\ell(n) > n$. Define $H : \{0,1\}^* \to \{0,1\}^*$ by the following procedure (for any $t \in \mathbb{N}$):

```
on input (x_1^0, \dots, x_t^0) \in \{0, 1\}^t:

for i = 1, \dots, \ell(t) do

(x_1^i, \dots, x_{t+1}^i) := G(x_1^{i-1}, \dots, x_t^{i-1})

return \left(x_{t+1}^1, \dots, x_{t+1}^{\ell(t)}\right)
```

Prove that G is a pseudorandom generator.

Hint: Use the *hybrid* $argument^1$.

¹https://en.wikipedia.org/wiki/Hybrid_argument_(Cryptography)