
Lecture 3
Symmetric Encryption II

17.11.18 version 1.1

Stefan Dziembowski
www.crypto.edu.pl/Dziembowski

University of Warsaw

Plan

1. Pseudorandom functions
2. Block cipher modes of operation

3. Block ciphers – popular
construction paradigms

4. Feistel ciphers

Random permutations

A random function
𝑭: 𝟎, 𝟏 𝒎 → {𝟎, 𝟏}𝒎

Suppose we have a box
with a “random function”

that Alice and Bob can
query

suppose 𝑭 is a bijection
In other words: it is a permutation on {𝟎, 𝟏}𝒎

Note

We consider permutations on {𝟎, 𝟏}𝒎, not on {𝟏,… ,𝒎}

Example:

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Example of an application: “encryption”

Suppose that M = {𝟎, 𝟏}𝒎. If only one message is sent then
Alice and Bob can do the following:

A random function
𝑭: {𝟎, 𝟏}𝒎 → {𝟎, 𝟏}𝒎

𝑪𝑴 𝑴

this requries secure
communication, so in
practice this
“method” doesn’t
make sense...

Can this box be simulated in real life?
Naive solution:

Select a random permutation 𝑭: {𝟎, 𝟏}𝒎 → {𝟎, 𝟏}𝒎 and give it
to both parties.

Problem:
The number of possible permutations is (𝟐𝒎)!

𝑭: {𝟎, 𝟏}𝒎 → {𝟎, 𝟏}𝒎 𝑭: {𝟎, 𝟏}𝒎 → {𝟎, 𝟏}𝒎

An idea
One cannot describe a random permutation

𝑭: {𝟎, 𝟏}𝒎 → {𝟎, 𝟏}𝒎

in a short space.

But maybe one can do it for a function that “behaves almost
like random”?

Answer:

YES, it is possible! (under certain assumptions)

objects like these are called
• pseudorandom permutations (by the theoreticians)
• block ciphers (by the practitioners)

Keyed permutations

For a partial function
𝑭: 𝟎, 𝟏 ∗ × 𝟎, 𝟏 ∗ → 𝟎, 𝟏 ∗

let 𝑭𝒌(𝒎) denote 𝑭(𝒌,𝒎).

A keyed-permutation is a function
𝑭: 𝟎, 𝟏 ∗ × 𝟎, 𝟏 ∗ → 𝟎, 𝟏 ∗ such that

1. for every 𝒌 function 𝑭𝒌 is a permutation
on some {𝟎, 𝟏}𝒏

2. for every 𝒌 functions 𝑭𝒌and 𝑭𝒌
−𝟏 are

poly-time computable.

𝑭

𝒏 is a function of
|𝒌|

for simplicity
assume: 𝒏 = |𝒌|

𝒌

𝑭𝒌(𝒎)

𝒎

Pseudorandom permutations

Intuition:

A keyed permutation 𝑭 is pseudorandom if it
cannot be distinguished from a completely
random permutation.

Scenario 𝟎

oracle
chooses a random 𝒌 ∈ {𝟎, 𝟏}𝒏.𝒎𝟏 ∈ {𝟎, 𝟏}𝒏

𝑭𝒌(𝒎𝟏)

𝒎𝟐 ∈ {𝟎, 𝟏}𝒏

𝑭𝒌(𝒎𝟐)

. . .

𝒎𝒕 ∈ {𝟎, 𝟏}𝒏

𝑭𝒌(𝒎𝒕)

security parameter
𝟏𝒏

distinguisher 𝑫

outputs 𝒃 ∈ {𝟎, 𝟏}

Scenario 𝟏

𝒎𝟏 ∈ {𝟎, 𝟏}𝒏

𝑭(𝒎𝟏)

𝒎𝟐 ∈ {𝟎, 𝟏}𝒏

𝑭(𝒎𝟐)

. . .

𝒎𝒕 ∈ {𝟎, 𝟏}𝒏

𝑭(𝒎𝒕)

security parameter
𝟏𝒏

distinguisher 𝑫

outputs 𝒃 ∈ {𝟎, 𝟏}

oracle
chooses a random permutation

𝑭 ∶ {𝟎, 𝟏}𝒏 → {𝟎, 𝟏}𝒏

This of course cannot be
done efficiently, but it

doesn’t matter

𝑷 𝑫 𝐨𝐮𝐭𝐩𝐮𝐭𝐬 “𝟏” 𝐢𝐧 𝐬𝐜𝐞𝐧𝐚𝐫𝐢𝐨 𝟎 − 𝑷 𝑫 𝐨𝐮𝐭𝐩𝐮𝐭𝐬 “𝟏” 𝐢𝐧 𝐬𝐜𝐞𝐧𝐚𝐫𝐢𝐨 𝟏
is negligible in 𝒏.

Pseudorandom permutations – the
definition

We say that a keyed-permutation 𝑭: {𝟎, 𝟏}∗ × 𝟎, 𝟏 ∗ →
𝟎, 𝟏 ∗ is a pseudorandom permutation (PRP) if

any polynomial-time randomized distinguisher 𝑫

cannot distinguish scenario 𝟎 from scenario 𝟏 with
a non-negligible advantage.

That is:

Strong pseudorandom permutations

oracle selects a random
𝒌 ∈ {𝟎, 𝟏}𝒏.

𝒄𝒊 ∈ {𝟎, 𝟏}𝒏

𝑭𝒌
−𝟏(𝒄𝒊)

distinguisher 𝑫

Suppose we allow the distinguisher to additionally ask the
oracle for inverting 𝑭:

Then we get a definition of a strong pseudorandom permutation.

The security definition doesn’t change.

In fact those two objects are indistinguishable for a
polynomial-time adversary.

PRFs vs PRP

If we drop the assumption that

𝑭𝒌 has to be a permutation

we obtain an object called

a “pseudorandom function (PRF)”.

Terminology

Before we had:

stream ciphers ≈ pseudorandom generators

Similarly:

block ciphers ≈ pseudorandom permutations

𝑭𝒌

𝑭(𝒎)

𝒎“plaintext”

“ciphertext”

this terminology is
a bit confusing

Another way to look at the stream
ciphers :

give me block 𝟏

give me block 𝟐

give me block 𝟑

. . .

𝑮𝑲

𝑮𝑲(𝟏) ∈ {𝟎, 𝟏}𝒎

𝑮𝑲(𝟐) ∈ {𝟎, 𝟏}𝒎

𝑮𝑲(𝟑) ∈ {𝟎, 𝟏}𝒎

. . .

Requiremenent:
𝑮𝑲 𝟏 ,𝑮𝑲 𝟐 , 𝑮𝑲 𝟑 ,…

has to “look random” if is 𝑲 random and secret.

𝒎 is a parameter

Block ciphers:

give me block 𝒙𝟏  {𝟎, 𝟏}𝒎

give me block 𝒙𝟐  {𝟎, 𝟏}𝒎

give me block 𝒙𝟑  {𝟎, 𝟏}𝒎

. . .

𝑭𝑲

𝑭𝑲(𝒙𝟏)  {𝟎, 𝟏}𝒎

𝑭𝑲(𝒙𝟐)  {𝟎, 𝟏}𝒎

𝑭𝑲(𝒙𝟑)  {𝟎, 𝟏}𝒎

. . .

Requiremenent:
𝑭𝑲 𝒙𝟏 , 𝑭𝑲 𝒙𝟐 , 𝑭𝑲 𝒙𝟑 , …

has to “look random” if is 𝑲 random and secret.

𝒎 is a parameter

for 𝒙𝟏, 𝒙𝟐, 𝒙𝟑… chosen adversarily

An additional property of the
block ciphers

give me block 𝒙𝟏

give me block 𝒙𝟐

give me block 𝒙𝟑

𝑭𝑲

𝑭𝑲(𝒙𝟏)

𝑭𝑲(𝒙𝟐)

𝑭𝑲(𝒙𝟑)

invert 𝑭𝑲(𝒙𝟏)

𝑭𝑲

𝒙𝟏

invert 𝑭𝑲(𝒙𝟐) 𝒙𝟐

invert 𝑭𝑲(𝒙𝟑) 𝒙𝟑

Popular block ciphers

key length block length

DES (1976)
(Data Encryption Standard)

56 64

IDEA (1991)

(International Data Encryption
Algorithm)

128 64

AES (1998)
(Advanced Encryption Standard)

128, 192 or 256 128

Other: Blowfish, Twofish, Serpent,...

A great design.
The only practical weakness: short key.
Can be broken by a brute-force attack.

How to encrypt using the block ciphers?

A naive (wrong) idea: Encrypt short blocks:

plaintext 𝒎

encryption 𝑭𝒌

ciphertext 𝒄

key 𝒌

decryption 𝑭𝒌
−𝟏

plaintext 𝒎

key 𝒌

Problems:
1. the messages have to be short
2. it is deterministic and has no state, so it cannot be CPA-secure.

Plan

1. Pseudorandom functions
2. Block cipher modes of operation

3. Block ciphers – popular
construction paradigms

4. Feistel ciphers

Block cipher modes of operation

Block ciphers cannot be used directly for encryption.

They are always used in some “modes of operation”

1. Electronic Codebook (ECB) mode ← not secure,

2. Cipher-Block Chaining (CBC) mode,

3. Output Feedback (OFB) mode,

4. Counter (CTR) mode,

. . .

Electronic Codebook mode

decryption:

𝑭𝒌

block 1

block 𝟏

block 2

block 𝟐

block 𝒕

block 𝒕

𝑭𝒌 𝑭𝒌

block 3

block 𝟑

𝑭𝒌

plaintext

ciphertext

encryption:

𝑭𝒌
−𝟏

block 𝟏

block 𝟏

block 𝟐

block 𝟐

block 𝒕

block 𝒕

block 𝟑

block 𝟐

. . .

plaintext

𝑭𝒌
−𝟏 𝑭𝒌

−𝟏 𝑭𝒌
−𝟏

. . .

It is not secure, and should not be used.

This mode was used in the past.

Example:

ECB

© wikipedia

Cipher-Block Chaining (CBC)

𝑭𝒌

block 𝟏

block 𝟏

block 𝟐

block 𝟐

𝑭𝒌

plaintext

ciphertext

encryption:

xorxor

random
initial
value

block 𝟑

block 𝟑

𝑭𝒌

xor

block 𝒕

block 𝒕

𝑭𝒌

xor

. . .

Cipher-Block Chaining (CBC)

𝑭𝒌
−𝟏

block 𝟏

block 𝟏

block 𝟐

block 𝟐

𝑭𝒌
−𝟏

. . .

plaintext

ciphertext

decryption:

xorxor

initial
value

block 𝟑

block 𝟑

𝑭𝒌
−𝟏

xor

block 𝒕

block 𝒕

𝑭𝒌
−𝟏

xor

CBC mode – properties

Error in block 𝒄𝒊 affects
only 𝒄𝒊 and 𝒄𝒊+𝟏.

So, errors don’t propagate (This
mode is self-synchronizing)

Error propagation?

Can encryption be parallelized? No

Can decryption be
parallelized?

Yes

What if one bit of plaintext is
changed?

Everything needs to be
recomputed

(not so good e.g. for disc
encryption)

CBC mode is secure
Theorem. If 𝑭 is a PRP then 𝑭-CBC is secure.
[M. Bellare, A. Desai, E. Jokipii and P. Rogaway 1997]

In the proof one can assume that 𝑭𝒌 is a completely random
function.
(If CBC behaves differently on a pseudorandom function,
then one could construct a distiguisher.)

𝑭𝒌𝑭𝒌 . . .

ciphertext

plaintext

random . . .

ciphertext

plaintext

random

CBC CBC

How to convert a pseudorandom permutation
into a pseudorandom generator?

𝑭𝒌

0000001 𝟎𝟎𝟎𝟎𝟎𝟎𝟐

𝑭𝒌 . . .

a pseudorandom stream

𝟎𝟎𝟎𝟎𝟎𝟎𝟑

𝑭𝒌

𝟎𝟎𝟎𝟎𝟎𝟎𝟒

𝑭𝒌

block 𝟏 block 𝟐 block 𝟑 block 𝟒

𝒌

a seed

Essentially, this is called a “counter mode” (CTR).

𝑮(𝒌) ∶= 𝑭𝒌(𝟏) || 𝑭𝒌(𝟐) || 𝑭𝒌(𝟑) || ···

How to “randomize” this?

𝑭𝒌

IV+1 IV+2

𝑭𝒌 . . .

a pseudorandom stream

IV+3

𝑭𝒌

IV+4

𝑭𝒌

block 1 block 2 block 3 block 4

𝒌

a seed

take some random IV

Note:
We have to be sure that IV + i never repeats.
This is why it is bad if the block length is too small (like in DES).

𝑮(𝒌, 𝐈𝐕) ∶= 𝑭𝒌(𝐈𝐕 + 𝟏) || 𝑭𝒌(𝐈𝐕 + 𝟐) || 𝑭𝒌(𝐈𝐕 + 𝟑) || ···

CTR mode – properties

Error in block 𝒄𝒊 affects only 𝒄𝒊.

(But this mode is not self-
synchronizing)

Error propagation?

Can encryption be parallelized? Yes

Can decryption be
parallelized?

Yes

What if one bit of
plaintext is changed?

Only one block needs to be
recomputed

One more member of minicrypt!

one-way functions
exist

pseudorandom
functions/permutations

exist

secure encryption
exist

using “modes of
operation”

this we already
knew

this can also be
proven

There are many constructions of block
ciphers that are believed to be secure

Why do we believe it?

• Someone important say “it is secure”.

(But is he honest?)

• Many people tried to break it and they failed...

Plan

1. Pseudorandom functions
2. Block cipher modes of operation

3. Block ciphers – popular
construction paradigms

4. Feistel ciphers

Block ciphers – typical requirements

• security: ideally the best attack should be the brute
force key search.

• efficiency when implemented on:
• 8 bit microcontrollers and smart cards with limited

memory

• tablets, phones, palmtops,

• PCs, workstations, servers,

• dedicated hardware (ASICs, FPGAs) – here we might
require speeds up to gigabits/second

• key agility – changing the key can be done very
efficiently

Block ciphers – more “informal”
requirements

• simplicity – advantages:
• easier to implement

• more confidence that there is no backdoor

• symmetry (repeating patterns):
• smaller circuits (in hardware)

• easier to program (in software).

Block ciphers –advanced security
requirements

• resistance to the side-channel attacks,

• resistance to the key-related attacks.

A very popular paradigm: iterated ciphers

key
schedule

key 𝒌

𝒌𝟐

𝒌𝒏

𝒌𝟏

input 𝑴𝟎

output 𝑴𝒏

𝑴𝟏 = 𝑹𝒌𝟏 𝑴𝟎

𝑴𝟐 = 𝑹𝒌𝟐 𝑴𝟏

𝑹: 𝟎, 𝟏 𝒂 × 𝟎, 𝟏 𝒎 → 𝟎, 𝟏 𝒎 – a round function
Typically we write the first argument in a subscript.

𝑴𝒏 = 𝑹𝒌𝒏 𝑴𝒏−𝟏

. . .

. . .

𝒎

𝒂

subkeys:

rounds

Note: since we use
the same 𝑹 in each
round, we get:
• symmetry
• flexibility in the

number of
rounds (useful
for analysis)

Popular types of iterated ciphers

1. Feistel ciphers

2. Substitution-permutation networks

3. Lai-Massey ciphers

Plan

1. Pseudorandom functions
2. Block cipher modes of operation

3. Block ciphers – popular
construction paradigms

4. Feistel ciphers

Feistel ciphers

Invented by Horst Feistel (1915-1990) in 1970s while working at
IBM.

First used in Lucifer. Most famous use: Data Encryption Standard
(DES).

Other ciphers that use it:

Blowfish, Camellia, CAST-128, FEAL, GOST 28147-89, ICE, KASUMI,
LOKI97, MARS, MAGENTA, MISTY1, RC5, Simon, TEA, Twofish,
XTEA,...

DES (Digital Encryption Standard)

• Key length:
• effective: 56 bits

• formally: 64 bits (8 bits for checking parity).

• Block length: 64 bits

History of DES

• First version designed by IBM in 1973-74, based
on a Lucifer cipher (by Horst Feistel).

• National Security Agency (NSA) played some role
in the design of DES.

• Made public in 1975.

• Approved as a US federal standard in November
1976.

Criticism of DES

• The key is to short (only 56 bits).

• Unclear role of NSA in the design

• hidden backdoor?

• 𝟐𝟓𝟔 : feasible for NSA, infeasible for the others
(in the 1970s)?

Security of DES
• The main weakness is the short key (brute-force attacks

are possible).

• Also the block length is too small.

Apart from this – a very secure design:

after 4 decades still the most practical attack is
brute-force!

The only attacks so far:
• differential cryptanalysis
• linear cryptanalysis
are rather theoretical

"NSA did not tamper with the design of the algorithm in
any way. IBM invented and designed the algorithm, made
all pertinent decisions regarding it, and concurred that
the agreed upon key size was more than adequate for all
commercial applications for which the DES was
intended."

"In the development of DES, NSA convinced IBM that a
reduced key size was sufficient; indirectly assisted in the
development of the S-box structures; and certified that
the final DES algorithm was, to the best of their
knowledge, free from any statistical or mathematical
weakness.”

The role of NSA
The United States Senate Select Committee on Intelligence

(1978):

Brute-force attacks on DES

• 1977
Diffie and Hellman proposed a machine costing 20 million $ breaking
DES in 1 day.

• 1993
Wiener proposed a machine costing 1 million $ breaking DES in 7
hours.

• 1997
DESCHALL Project broke a “DES Challenge” (published by RSA) in 96
days using idle cycles of thousands of computers across the Internet.

• 1998
a DES-cracker was built by the Electronic Frontier Foundation (EFF),
at the cost of approximately 250,000$

• 2000s
COPACOBANA (the Cost-Optimized Parallel COde Breaker) breaks DES
in 1 week and costs 10,000$

DES-cracker

COPACOBANA

Theoretical attacks on DES – differential
cryptoanalysis

Biham and Shamir (late 1980s):

differential cryptoanalysis

They show how to break DES using a chosen-plaintext attack.

DESk

plaintext

ciphertext

𝟐𝟒𝟕 times

Not very practical...𝒌

A small change in the design of DES would make the
differential cryptanalysis much more sucesfull.

Differential cryptoanalysis – an
interesting observation

Moral
NSA and IBM knew it!

see: Coppersmith, Don (May 1994). "The Data Encryption Standard (DES) and its
strength against attacks" (PDF). IBM Journal of Research and Development 38 (3):
243. http://www.research.ibm.com/journal/rd/383/coppersmith.pdf.

Don Coppersmith, IBM

"After discussions with NSA, it was
decided that disclosure of the design
considerations would reveal the
technique of differential
cryptanalysis, a powerful technique
that could be used against many
ciphers. This in turn would weaken
the competitive advantage the
United States enjoyed over other
countries in the field of cryptography.”

http://www.research.ibm.com/journal/rd/383/coppersmith.pdf
http://www.research.ibm.com/journal/rd/383/coppersmith.pdf

Theoretical attacks on DES – linear
cryptoanalysis

Matsui (early 1990s):

linear cryptoanalysis

uses a known-plaintext attack

𝟐𝟒𝟑 (plaintext, ciphertext) pairs

this means:
the adversary

doesn’t need to
choose the
plaintexts

Let’s now discuss in detail how DES is built.

𝒇

𝒇

𝑹𝟎𝑳𝟎

𝑹𝟏𝑳𝟏

𝒇

𝑹𝒏𝑳𝒏

. . .

𝒏
“F

e
iste

l ro
u

n
d

s”

𝒌𝟐

. . .

𝒌𝒏

𝒌𝟏

𝒎/𝟐 𝒎/𝟐subkeys:

𝒌

key
schedule

Feistel
network

here no twist

A nice propery of Feistel rounds

𝒇

𝑹𝒊𝑳𝒊

𝑹𝒊+𝟏: = 𝑳𝒊 𝐱𝐨𝐫 𝒇(𝑹𝒊)𝑳𝒊+𝟏: = 𝑹𝒊

𝒇

𝑹𝒊(𝑳𝒊 𝐱𝐨𝐫 𝒇 (𝑹𝒊)) 𝐱𝐨𝐫 𝒇(𝑳𝒊+𝟏)

Even if 𝒇 is not easily invertible, each round can be easily inverted!

=

𝑳𝒊

inversion:

𝒇𝟐

𝒇𝟏

𝑹𝟎𝑳𝟎

𝑹𝟏𝑳𝟏

𝒇𝟑

𝑹𝟑𝑳𝟑

𝑹𝟐𝑳𝟐

𝒇𝟑

𝑹𝟑𝑳𝟑

𝒇𝟐

𝒇𝟏

𝑹𝟎𝑳𝟎

𝑹𝟐𝑳𝟐

𝑹𝟏𝑳𝟏

Hence: the Feistel network can be “inverted”!
Example: 3 round Feistel network

𝒇𝟑

𝒇𝟐

𝒇𝟏

𝑹𝟎𝑳𝟎

𝑹𝟏𝑳𝟏

𝒇𝟑

𝑹𝟑𝑳𝟑

𝑹𝟐𝑳𝟐

𝑹𝟑𝑳𝟑

𝑹𝟎𝑳𝟎

Without a “twist” in the last round:

𝑹𝟏𝑳𝟏

𝒇𝟐

𝒇𝟏

𝑹𝟐𝑳𝟐

𝒇

𝒇

𝑹𝟎𝑳𝟎

𝑹𝟏𝑳𝟏

𝒇

𝑹𝒏𝑳𝒏

...
key 𝒌

𝒌𝒏−𝟏

...

𝒌𝟏

key
schedule

𝒌𝒏

How to decrypt?
Reverse the key schedule (note: symmetry)!

Feistel networks are also studied by
the theoreticians

Suppose 𝒇 is a pseudorandom function, and we use it to
construct a Feistel network.

Then:
• the 𝟑-round Feistel network is a pseudorandom

permutation,
• the 𝟒-round Feistel network is a strong pseudorandom

permutation.

see M. Luby and C. Rackoff. "How to Construct
Pseudorandom Permutations and Pseudorandom
Functions." In SIAM J. Comput., vol. 17, 1988, pp. 373-
386.

How is the Feistel network used in DES?

The following needs to be described:

1. The concrete parameters

2. The key schedule algorithm.

3. The functions 𝒇.

initial permutation (IP)

“Feistel network”

final permutation (IP-1)

key 𝒌

input

output

𝟔𝟒 bits

DES:

56 bits
16

rounds

DES key schedule

𝒌
𝒌𝟐

...

𝒌𝟏𝟔

key
schedule

𝒌𝟏

each subkey 𝒌𝒊 consists of some bits of 𝒌 (we skip the details)

𝟓𝟔 bits

𝟒𝟖 bits

half-block 𝑿

𝟑𝟐 bits

expansion

48 bits

subkey 𝑲𝒊

48 bits

𝒀 𝐱𝐨𝐫 𝑲𝒊

S1 S2 S3 S4 S5 S6 S7 S8

half-block 𝒀

permutation 𝑷

𝟑𝟐 bits

“S – boxes”
𝑺𝒊: {𝟎, 𝟏}

𝟔 → {𝟎, 𝟏}𝟒

“confusion”

“diffusion”

function 𝒇:

The expansion function

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

Permutation 𝑷

16 7 20 21

29 12 28 17

1 15 23 26

5 18 31 10

2 8 24 14

32 27 3 9

19 13 30 6

22 11 4 25

Properties of 𝑷
The construction of 𝑷 looks a bit ad-hoc.

Still, some properties of it are known:

• The four bits output from an S-box are distributed so that they
affect six different S-boxes in the following round.

• If an output bit from S-box 𝒊 affects one of the two middle input
bits to S-box 𝒋 (in the next round), then an output bit from S-box
𝒊 cannot affect a middle bit of S-box 𝒊.

• The middle six inputs to two neighbouring S-boxes (those not
shared by any other S-boxes) are constructed from the outputs
from six different S-boxes in the previous round.

• The middle ten input bits to three neighbouring S-boxes, four
bits from the two outer S-boxes and six from the middle S-
box, are constructed from the outputs from all S-boxes in the
previous round.

The substitution boxes
(S-boxes)

S5

Middle 4 bits of input

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Outer
bits

00 0010 1100 0100 0001 0111 1010 1011 0110 1000 0101 0011 1111 1101 0000 1110 1001

01 1110 1011 0010 1100 0100 0111 1101 0001 0101 0000 1111 1010 0011 1001 1000 0110

10 0100 0010 0001 1011 1010 1101 0111 1000 1111 1001 1100 0101 0110 0011 0000 1110

11 1011 1000 1100 0111 0001 1110 0010 1101 0110 1111 0000 1001 1010 0100 0101 0011

Example of an S-box

Properties of S-boxes [1/2]
The design of S-boxes was controversial from the
beginning (we discussed it before).

Responding to this the designers of DES published
the criteria that they were using in this design:

• No S-box is a linear or affine function of the input.

• Changing one bit in the input to an S-box results in
changing at least two output bits.

• The S-boxes were chosen to minimise the
difference between the number of 1’s and 0’s when
any single input bit is held constant.

Properties of S-boxes [2/2]
• For any S-box 𝑺, it holds that

𝑺[𝒙] and 𝑺[𝒙⊕ 𝟎𝟎𝟏𝟏𝟎𝟎]

differ in at least two bits.

• For any S-box 𝑺, it holds that

𝑺 𝒙 ≠ 𝑺[𝒙⊕ 𝟏𝟏𝒓𝒔𝟎𝟎]

for any binary values 𝒓 and 𝒔.

• If two different 𝟒𝟖-bit inputs to the ensemble of eight S-boxes
result in equal outputs, then there must be different inputs to at
least three neighbouring S-boxes.

• For any S-box it holds that for any nonzero 𝟔-bit value α, and for
any 4-bit value 𝜷, that the number of solutions (for 𝒙) to the
equation

𝑺 𝒙 ⊕ 𝑺 𝒙⊕ 𝜶 = 𝜷

is at most 16. makes the differential cryptanalysis harder

DES – the conclusion

• The design of DES is extremally good.

• The only weaknesses: short key and block.

• Enormous impact on research in cryptography!

One practical weakness of
Feistel networks

Only half of the message is processed at one time.

Question: Is there any alternative construction
that does not have this problem?

Yes! (substitution-permutation networks)

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or
all of this material is currently granted without fee provided that copies are made
only for personal or classroom use, are not distributed for profit or commercial
advantage, and that new copies bear this notice and the full citation.

