
Lecture 6b

Introduction to Public Key
Cryptography

7.11.18 version 1.0

Stefan Dziembowski
www.crypto.edu.pl/Dziembowski

University of Warsaw

http://www.crypto.edu.pl/Dziembowski

Plan

1. Public key cryptography – an overview

2. The key management problem
1. qualified signatures

2. public key infrastructure

3. Identity-based cryptography

Public-Key Cryptography

Whitfield Diffie and Martin Hellman (1976)Ralph Merkle (1974)

also called: asymmetric
cryptography

A similar idea was described by Ralph Merkle:
in 1974 he described it in a project proposal for a Computer Security
course at UC Berkeley
(it was rejected)
in 1975 he submitted it to the CACM journal (it was rejected)
(see www.merkle.com/1974/)

Diffie and Hellman were the first to publish a paper
containing the idea of the public-key cryptography:

W.Diffie and M.E.Hellman,
New directions in cryptography
IEEE Trans. Inform. Theory, IT-22, 6, 1976, pp.644-654.

A little bit of history

In 1997 the GCHQ (the British equivalent of the NSA) revealed
that they knew it already in 1973.

http://www.merkle.com/1974/

The idea

Alice Bob

𝒌 𝒌

𝒎 𝒄 ∶= 𝐄𝐧𝐜(𝒌,𝒎) 𝐃𝐞𝐜(𝒌, 𝒄)

𝒄 ∶= 𝐄𝐧𝐜(𝒑𝒌,𝒎) 𝐃𝐞𝐜(𝒔𝒌, 𝒄)

𝒑𝒌 𝒔𝒌

Instead of using one key 𝒌,
use 𝟐 keys (𝒑𝒌, 𝒔𝒌), where

𝒑𝒌 is used for encryption,
𝒔𝒌 is used for decryption.

𝒑𝒌 can be public,
and only 𝒔𝒌 has to

be kept secret!

That’s why it’s
called: public-key

cryptography

The same thing works for
authentication

• 𝒔𝒌 is used for computing a
tag,

• 𝒑𝒌 is used for verifying
correctness of the tag.

Alice Bob

𝒌 𝒌

𝒎 (𝒎, 𝒕 ∶= 𝐓𝐚𝐠(𝒌,𝒎)) 𝐕𝐫𝐟𝐲(𝒌,𝒎, 𝒕)

(𝒎, 𝒕 ∶= 𝐒𝐢𝐠𝐧(𝒔𝒌,𝒎)) 𝐕𝐫𝐟𝐲(𝒑𝒌,𝒎, 𝒕)

𝒑𝒌𝒔𝒌

this will be called
“signatures”

Sign – the signing
algorithm

Anyone can send encrypted messages to
anyone else

𝑷𝟓

𝑷𝟏

𝑷𝟑𝑷𝟐

𝑷𝟒

𝒑𝒌𝟏

𝒑𝒌𝟐

𝒑𝒌𝟑

𝒑𝒌𝟒

𝒑𝒌𝟓

2. reads 𝒑𝒌𝟑

1. 𝑷𝟏 wants to send 𝒎 to 𝑷𝟑

public register:

𝒔𝒌𝟑

4. 𝑷𝟑 computes
𝐃𝐞𝐜(𝒔𝒌𝟑,𝒎)

Anyone can verify the signatures

𝑷𝟓

𝑷𝟏

𝑷𝟐

𝑷𝟒

𝒑𝒌𝟏

𝒑𝒌𝟐

𝒑𝒌𝟑

𝒑𝒌𝟒

𝒑𝒌𝟓

public register:
𝐒𝐢𝐠𝐧(𝒔𝒌𝟑,𝒎)

2. reads 𝒑𝒌𝟑

𝒔𝒌𝟑

3. computes 𝐕𝐫𝐟𝐲(𝒑𝒌𝟑,𝒎)

𝑷𝟑

1. publicly verifiable,
2. transferable, and
3. provide non-repudiation

Advantages of the signature schemes

Digital signatures are:

(we explain it on the next slides)

Look at the MACs...

Alice Bob

(𝒎, 𝒕 = 𝐓𝐚𝐠𝒌(𝒎))

𝒌 𝒌

𝒎 ∈ 𝟎, 𝟏 ∗

Carol

Look, I got (𝒎, 𝒕) from AliceWhy shall I trust you?

1. You could have created 𝒕 yourself
(because you know 𝒌)

2. I don’t know 𝒌, so how can I verify
the tag?

Signatures are publicly-verifiable!

Alice Bob

(𝒎, 𝝈 = 𝐒𝐢𝐠𝐧𝒔𝒌(𝒎))

𝒔𝒌𝑨 𝒑𝒌𝑨

𝒎 ∈ 𝟎, 𝟏 ∗

Carol

I can calculate

𝐕𝐫𝐟𝐲(𝒑𝒌𝑨,𝒎, 𝝈)

and check.

Look, I got (𝒎, 𝝈) from Alice

So, the signatures are transferable

𝑷𝟐 𝑷𝟑

Alice

𝑷𝟒𝑷𝟏

𝝈
=

𝐒
𝐢𝐠
𝐧
(𝒔
𝒌
𝑨
,𝒎

)

𝒔𝒌𝑨

(𝒎,𝝈) (𝒎,𝝈) (𝒎,𝝈)

“Alice
signed 𝒎”

𝒑𝒌𝑨 𝒑𝒌𝑨 𝒑𝒌𝑨 𝒑𝒌𝑨

“Alice
signed 𝒎”

“Alice
signed 𝒎”

I believe it! I believe it! I believe it!

Non-repudiation

Alice Bob

(𝒎, 𝝈 = 𝐒𝐢𝐠𝐧𝒔𝒌(𝒎))

𝒔𝒌𝑨 𝒑𝒌𝑨

𝒎 ∈ 𝟎, 𝟏 ∗

Judge

“I’ve got (𝒎, 𝝈) from Alice”

It’s not true!
I never signed 𝒎!

𝐕𝐫𝐟𝐲(𝒑𝒌,𝒎, 𝝈) = 𝐲𝐞𝐬
so you cannot repudiate signing 𝒎...

Things that need to be discussed

• Who maintains “the register”?

• How to contact it securely?

• How to revoke the key (if it is lost)?

• ...

We will discuss these things
later, when we will be talking

about the
Public-Key Infrastructure

anyone can lock it

But is it possible?

In the “physical world”: yes!

Examples:

1. “normal” signatures

2. padlocks:

the key is needed to unlock

Diffie and Hellman proposed the public key
cryptography in 1976.

They just proposed the concept, not the
implementation.

They have also shown a protocol for key-exchange.

Diffie and Hellman (1976)

The observation of Diffie and Hellman:

plaintexts ciphertexts

(𝒑𝒌, 𝒔𝒌) – the key pair

𝐄𝐧𝐜(𝒑𝒌, 𝒙)

𝐃𝐞𝐜(𝒔𝒌, 𝒚)

easy only if one knows 𝒔𝒌

tags
(“signatures”) messages

𝐕𝐫𝐟𝐲(𝒑𝒌, 𝒙)

𝐒𝐢𝐠𝐧(𝒔𝒌, 𝒚)

easy only if one knows 𝒔𝒌

public-key encryption:

signature schemes:

Looks similar...

Trapdoor permutations (informal definition)

𝑿 𝑿

easy

• easy: one can compute 𝐄𝐧𝐜𝒑𝒌
−𝟏

if one knows a trapdoor 𝒔𝒌
• hard (otherwise)

𝐄𝐧𝐜𝒑𝒌

this is
denoted
𝐃𝐞𝐜𝒔𝒌

A family of permutations indexed by 𝒑𝒌 ∈ 𝐤𝐞𝐲𝐬 :

𝐄𝐧𝐜𝒑𝒌 ∶ 𝑿 → 𝑿 𝒑𝒌 ∈ 𝐤𝐞𝐲𝐬

such that for every key 𝒑𝒌 there exists a key 𝒔𝒌, and:

How to encrypt a message 𝒎

messages ciphertexts

𝒎 ∶= 𝐃𝐞𝐜𝒔𝒌(𝒄)

𝒄 ∶= 𝐄𝐧𝐜𝒑𝒌(𝒎)

one can compute it
only if one knows 𝒔𝒌

encryption:

decryption:

Warning: In reality it’s not that simple. We will explain it later.

How to sign a message 𝒎

signatures messages

𝐃𝐞𝐜𝒔𝒌(𝒎)

𝐄𝐧𝐜𝒑𝒌(𝒎)

one can compute it
only if one knows 𝒔𝒌

signing:

verifying:

Warning: In reality it’s not that simple. We will explain it later.

and compare the result

Do such functions exist?

Ron Rivest, Adi Shamir, and Leonard Adleman (1977)

Yes: exponentiation modulo 𝑵, where 𝑵 is a product of two
large primes.

RSA function is (conjectured to be) a trapdoor permutation!

The RSA function
𝑵 = 𝒑𝒒, such that 𝒑 and 𝒒 are random primes,

and |𝒑| = |𝒒|

𝒆 – random such that 𝒆 ⊥ (𝒑 − 𝟏)(𝒒 − 𝟏)

𝒅 – random such that 𝒆𝒅 = 𝟏 (𝐦𝐨𝐝 (𝒑 − 𝟏)(𝒒 − 𝟏))

𝒑𝒌 ∶= (𝑵, 𝒆) 𝒔𝒌 ∶= (𝑵, 𝒅)

𝐄𝐧𝐜𝒑𝒌: 𝒁𝑵 → 𝒁𝑵 is defined as:
𝐄𝐧𝐜𝒑𝒌 (𝒎) = 𝒎𝒆 𝐦𝐨𝐝 𝑵.

𝐃𝐞𝐜𝒔𝒌: 𝒁𝑵 → 𝒁𝑵 is defined as:
𝐃𝐞𝐜𝒔𝒌 (𝒄) = 𝒄𝒅𝐦𝐨𝐝 𝑵.

Questions and doubts

𝑵 = 𝒑𝒒, such that 𝒑 and 𝒒 are random primes,
and |𝒑| = |𝒒|

𝒆 – random such that 𝒆 ⊥ (𝒑 − 𝟏)(𝒒 − 𝟏)
𝒅 – random such that 𝒆𝒅 = 𝟏 (𝐦𝐨𝐝 (𝒑 − 𝟏)(𝒒 − 𝟏))

𝒑𝒌 ∶= (𝑵, 𝒆) 𝒔𝒌 ∶= (𝑵, 𝒅)

𝐄𝐧𝐜𝒑𝒌: 𝒁𝑵 → 𝒁𝑵 is defined as:
𝐄𝐧𝐜𝒑𝒌 𝒎 = 𝒎𝐞 𝐦𝐨𝐝 𝑵.

𝐃𝐞𝐜𝒔𝒌: 𝒁𝑵 → 𝒁𝑵 is defined as:
𝐃𝐞𝐜𝒔𝒌 (𝒄) = 𝒄𝒅𝐦𝐨𝐝 𝑵.

How large these
primes need to be?

How to sample them?

Can exponentiation
be done efficiently?

where does this come
from?

𝐄𝐧𝐜𝒑𝒌 (𝟏) = 𝟏𝒆𝐦𝐨𝐝 𝑵 = 𝟏
Oops...

encryption is
deterministic...

We will address them later...

“Handbook” RSA

Handbook RSA encryption scheme:

messages and ciphertexts: 𝒁𝑵
• 𝐄𝐧𝐜𝑵,𝒆 𝒎 = 𝒎𝒆𝐦𝐨𝐝 𝑵

• 𝐃𝐞𝐜𝑵,𝒅 𝒄 = 𝒄𝒅 𝐦𝐨𝐝 𝑵

(𝑵, 𝒆, 𝒅) – as on the previous slide

Handbook RSA signature scheme:
messages and signatures: 𝒁𝑵
• 𝝈 ≔ 𝐒𝐢𝐠𝐧𝑵,𝒅 𝒎 = 𝒎𝒅 𝐦𝐨𝐝 𝑵

• 𝐕𝐫𝐟𝐲𝑵,𝒆 𝒎,𝝈 = output yes iff 𝝈𝒆𝐦𝐨𝐝 𝑵 = 𝒎

Is RSA secure?

Is RSA secure:

1. as an encryption scheme?

2. as a signature scheme?

The answer is not that simple.

First, we would need to define security!

We will do it on the next lectures.

Symmetric vs asymmetric crypto

Symmetric cryptography (also called: private key
cryptography) is much more efficient!

Example (Intel Core 2 1.83 GHz processor):

11.9
MiB/Second Cycles/Byte

AES/CTR (128-bit key) 139 12.6

HMAC(SHA-1) 147 11.9

Operations/Second Megacycles/Operation

RSA 2048 Encryption 6,250 0.29

RSA 2048 Signature 165 11.06

Source: https://www.cryptopp.com/benchmarks.html

Practical solutions

Typically asymmetric cryptography is combined
with the symmetric one.

For example: asymmetric cryptography is used
only for agreeing on a symmetric key.

Or: one can combine it directly using a “hybrid
approach”.

(we will discuss it later)

Plan

1. Public key cryptography – an overview

2. The key management problem
1. qualified signatures

2. public key infrastructure

3. Identity-based cryptography

𝑷𝟓

𝑷𝟏

𝑷𝟑𝑷𝟐

𝑷𝟒

𝒑𝒌𝟏

𝒑𝒌𝟐

𝒑𝒌𝟑

𝒑𝒌𝟒

𝒑𝒌𝟓

public register:

𝒔𝒌𝟑

𝒔𝒌𝟓

𝒔𝒌𝟒𝒔𝒌𝟏

𝒔𝒌𝟐

Remember this slide?

Question:
How to maintain the public register?

1. We start with the case when the public keys are
used for signing that is legally binding.

2. Then we consider other cases.

A problem

Alice Bob

(𝒎, 𝝈 = 𝐒𝐢𝐠𝐧𝒔𝒌(𝒎))

𝒔𝒌𝑨 𝒑𝒌𝑨

𝒎 ∈ 𝟎, 𝟏 ∗

Judge

I got (𝒎, 𝝈) from Alice
It’s not true!
I never signed 𝒎!

𝐕𝐫𝐟𝐲(𝒑𝒌,𝒎, 𝝈) = 𝐲𝐞𝐬
so you cannot repudiate signing 𝒎...

But 𝒑𝒌 is not my public key!

Solution: certification authorities

A simplified view:

comes with her ID and 𝒑𝒌𝐀𝐥𝐢𝐜𝐞

(𝒑𝒌𝐂𝐞𝐫𝐭, 𝒔𝒌𝐂𝐞𝐫𝐭)

checks the ID of Alice and
issues a certificate:

SignskCert
(“𝒑𝒌𝐀𝐥𝐢𝐜𝐞 is a public key of Alice”)

Alice

Now, everyone can verify that 𝒑𝒌𝐀𝐥𝐢𝐜𝐞 is a public key of Alice.
So Alice can attach it to every signature

Certification Authority

really everyone?

It is better if Cert also keeps a document:
“I, Alice certify that pkAlice is my public key”

with a written signature of Alice.

What is needed to verify the
certificate

To verify the certificate coming from Cert one needs:

1. to know the public key of the Cert

2. to trust Cert.

Ustawa o podpisie elektronicznym, z dnia 18 września
2001 r.
(Dz.U.01.130.1450) 28 str. (ISIP), na podst. dyrektywy EU
1999/93/EC

Many countries have now a special law regulating these things.

How does it look from the legal
point of view?

What matters at the end is if you can convince the judge.

In Poland:

http://ipsec.pl/podpis_elektroniczny/ustawa_o_podpisie_elektronicznym.pdf
http://isip.sejm.gov.pl/servlet/Search?todo=open&id=WDU20011301450
http://ipsec.pl/podpis/EU 99-93 digsig pl.pdf

The qualified signature is equivalent to the written one!

A signature obtained this way is called a qualified digital
signature.

A certificate issued by such an authority is called a
qualified certificate.

This law defines the conditions to become an official
certification authority.

Polish Certificate Authorities:

The certificate is valid just for some period.

You have to go to one of these companies and get a
qualified certificate (it costs!).

So, what to do if you want to issue
the qualified signatures?

In this case you have to revoke the certificate.

Every authority maintains a list of revoked
certificates.

The certificates come with some insurance.

What if the secret key is lost?

It’s risky to use them:

How do you know what your computer is really signing?
Computers have viruses, Trojan horses, etc.

You can use external trusted hardware but it should
have a display (so you can see what is signed).

Remember: qualified signatures are equivalent to the
written ones!

The certificates cost.

In many case one doesn’t want to use the
qualified signatures

Plan

1. Public key cryptography – an overview

2. The key management problem
1. qualified signatures

2. public key infrastructure

3. Identity-based cryptography

In many cases the qualified signatures are an overkill.

The certificates are distributed using a public-key
infrastructure (PKI).

Instead, people use non-qualified signatures.

Practical solution

Users can certify keys of the other users

𝑷𝟏 𝑷𝟑𝑷𝟐

𝒑𝒌𝟑𝒑𝒌𝟏 𝒑𝒌𝟐

knows 𝒑𝒌𝟐 knows 𝒑𝒌𝟑

“trusts” 𝑷𝟐

𝑷𝟐 certifies that 𝒑𝒌𝟑 is a public key of 𝑷𝟑 signature of 𝑷𝟐

𝑷𝟏 believes
that 𝒑𝒌𝟑 is a
public key of 𝑷𝟑

this should be done only if 𝑷𝟐 really met 𝑷𝟑 in person and verified his identity

𝑷𝟏 𝑷𝟑𝑷𝟐

𝒑𝒌𝟑𝒑𝒌𝟏 𝒑𝒌𝟐

knows 𝒑𝒌𝟐 knows 𝒑𝒌𝟑

“trusts” 𝑷𝟐

𝑷𝟒

𝒑𝒌𝟒

knows 𝒑𝒌𝟒

“trusts” 𝑷𝟑

𝑷𝟐 certifies that 𝒑𝒌𝟑 is a public key of 𝑷𝟑 signature of 𝑷𝟐

𝑷𝟑 certifies that 𝒑𝒌𝟒 is a public key of 𝑷𝟒 signature of 𝑷𝟑

𝑷𝟏 believes
that 𝒑𝒌𝟒 is a
public key of 𝑷𝟒

𝑷𝟏 𝑷𝟑𝑷𝟐

𝒑𝒌𝟑𝒑𝒌𝟏 𝒑𝒌𝟐

knows 𝒑𝒌𝟐 knows 𝒑𝒌𝟑

“trusts” 𝑷𝟐

𝑷𝟒

𝒑𝒌𝟒

𝑷𝟐 certifies that 𝒑𝒌𝟑 is a public key of 𝑷𝟑 signature of 𝑷𝟐

𝑷𝟑 certifies that 𝒑𝒌𝟒 is a public key of 𝑷𝟒 signature of 𝑷𝟑

𝑷𝟏 believes
that 𝒑𝒌𝟓 is a
public key of 𝑷𝟓

“trusts” 𝑷𝟑

knows 𝒑𝒌𝟒

𝑷𝟓

𝒑𝒌𝟒

“trusts” 𝑷𝟒

𝑷𝟒 certifies that 𝒑𝒌𝟓 is a public key of 𝑷𝟓 signature of 𝑷𝟒

This is called a
certificate chain

knows 𝒑𝒌𝟓

A problem

What if 𝑷𝟏does not know 𝑷𝟑?

How can he trust him?

Answer: 𝑷𝟐 can recommend 𝑷𝟑 to 𝑷𝟏.

𝑷𝟏 𝑷𝟑𝑷𝟐

𝒑𝒌𝟑𝒑𝒌𝟏 𝒑𝒌𝟐

knows 𝒑𝒌𝟐 knows 𝒑𝒌𝟑

“trusts” 𝑷𝟐

𝑷𝟒

𝒑𝒌𝟒

“trusts” 𝑷𝟑

knows 𝒑𝒌𝟒

A question: is trust transitive?

𝑷𝟏 𝑷𝟑𝑷𝟐

𝒑𝒌𝟑𝒑𝒌𝟏 𝒑𝒌𝟐

“trusts” 𝑷𝟐 “trusts” 𝑷𝟑

𝑷𝟏 𝑷𝟑𝑷𝟐

pk3𝒑𝒌𝟏 𝒑𝒌𝟐

“trusts” 𝑷𝟑

Does:

imply:

?

Example

𝑷𝟏 𝑷𝟑𝑷𝟐

𝒑𝒌𝟑𝒑𝒌𝟏 𝒑𝒌𝟐

trusts that
𝑷𝟐 is a very

honest person

𝑷𝟏 𝑷𝟑𝑷𝟐

𝒑𝒌𝟑𝒑𝒌𝟏 𝒑𝒌𝟐

doesn’t trust that 𝑷𝟑

is honest, because he thinks that
𝑷𝟐 is honest but naive

trusts that
𝑷𝟑 is a very

honest person

I can recommend 𝑷𝟑

“𝑷𝟏 trusts that
if

𝑷𝟐 says: “you can trust the certificates issued by 𝑷𝟑”
then

one can trust the certificates issued by 𝑷𝟑”

“𝑷𝟏 trusts in the certificates issued by 𝑷𝟐”

Moral

Trust is not transitive:

is not the same as:

level 𝟏 recommendation:
A: ”you can trusts in all the certificates issued by B”

level 𝟐 recommendation:
A : “you can trust that all the level 𝟏 recommendations
issued by B”

level 𝟑 recommendation:
A : “you can trust that all the level 𝟐 recommendations
issued by B”

and so on. . .

Recommendation levels

Recursively:

level 𝒊 + 𝟏 recommendation:

A : “you can trust that all the level 𝒊 recommendations issued by B”

𝑷𝟏 𝑷𝟑𝑷𝟐 𝑷𝟒

𝑷𝟏 𝑷𝟑𝑷𝟐 𝑷𝟒

trusts the certificates issued by 𝑷𝟒

Now, if:

then

Of course the recommendations also need to be signed.

Starts to look complicated...

𝑷𝟐 issues
a recommendation
of level 𝟐 for 𝑷𝟑

𝑷𝟑 issues
a recommendation
of level 𝟏 for 𝑷𝟒

𝑷𝟏 trusts in all the
recommendations of
level 𝟐 issued by 𝑷𝟐

SSL is implemented is implemented in every
popular web-browser.

X.509 is used for example in SSL.

Here the level of recommendations is bounded
using a field called basic constraints.

How is it solved in practice?

In popular standard is X.509 the recommendation
is included into a certificate.

So, let’s look at it.

this field limits the
recommendation

depth
(here it’s unlimited)

Concrete example

Let’s go to the Banca Di Roma website

a certificate
chain

the second certificate was
signed by ”Verisign
Primary Authority” for
“Verisign Inc”.

(it’s not strange, we will
discuss it)

Look here

The third certificate
was issued by
Verisign Inc.
for
Banca di Roma

The typical picture

web browser knows these certificates

Verisign DigiCert Entrust
. . .

Verisign
Europe

Verisign
USA

Verisign
Italy

Banca di Roma

a certificate path

Implicit assumptions:

• the author of the browser is honest,
• the author of the browser is competent
• nobody manipulated the browser

is it
always
true?

CA1

CA2

CA3

CAn

client

cert1

cert2

cert3

certn-1

certn

Moreover:
each certi has a number 𝒅𝒊denoting a
maximal depth of certificate chain
from this point
(this limits the recommendation
depth)

That is, we need to have:
𝒅𝒊 ≥ 𝒏 − 𝒊

All these certificates have to
have a flag “Is a Certification Authority”
switched on.

𝒅𝟏

𝒅𝟐

𝒅𝟑

𝒅𝒏

For example: the last element in the chain can be
anybody (who paid to Verising for a certificate).

Is it so important to check it?

Yes!

For sure we do not want to trust the certificates issued
by anyone.

So, what happens when a user
contacts the bank?

Alice

sends
(cert1,..., certn)

If Alice’s browser knows cert1 it can
verify the chain and read the public key of the
bank from certn .

Bank

Other information that the
certificats contain

• information about the signature algorithm

• validity (dates)

• address of the certificate revocation list

Certificate Revocation List (CRL):
the list of revoked certificates

(need to access it before accepting the
certificate)

Main problems with X.509

1. Certificate revocation lists work only if you are
online.

2. Revocation of root certificates not addressed.

3. CAs cannot restrict the domains on which the
subordinate CAs issue certificates.

4. It’s enough into hack one of the popular CA’s to
impersonate any webpage.

Not only theoretical problems

A solution: “Public Key Pinning”:

• after the first connection the web browser
remembers the public keys on the certificate
chain,

• in each subsequent connection the browser checks
if the certificate chain is the same as before.

Another problem

In practice:

the certificate issuers do not check the identity
of their customers carefully

(due to the economical reasons).

Solution:
Extended Validation Certificates

Some certificates are issued after a more careful check.

This is indicated in the web browser.

Example from Chrome:

EV certificate:

Non-EV certificate:

A different idea for a PKI

Namecoin

use Bitcoin’s “blockchain” as a distributed register.

Another popular PKI (in the
past)
Pretty Good Privacy (PGP) – every user can act as

a certification authority.

Hence the name:

Web of Trust

Plan

1. Public key cryptography – an overview

2. The key management problem
1. qualified signatures

2. public key infrastructure

3. Identity-based cryptography

Identity based cryptography

Main idea:

the identifier 𝐈𝐃 of the user is its public key.

(e.g. ID = user’s email address).

ID: alice@gmail.com

𝑪 = 𝐄𝐧𝐜(𝐈𝐃,𝑴)
message 𝑴

question:
What is the private key?

Solution

carol@gmail.com

bob@gmail.com

alice@gmail.com

holds a master
secret key SK

central authority secret key SKalice@gmail.com :

Extract(SK, alice@gmail.com)

secret key of SKbob@gmail.com :

Extract(SK, bob@gmail.com)

secret key of SKcarol@gmail.com :

Extract(SK, carol@gmail.com)

sent over a secure link

C = Enc(alice@gmail.com, M)

How to decrypt

alice@gmail.com

message 𝑴

knows
SKalice@gmail.com

calculates
M=Dec(Skalice , C)

ID-based encryption

Main advantage:

• no need for an “infrastructure”

Drawbacks:

• users need to trust an authority,

• and they need to have a secure link to it,

• what about the key revocation?

ID-based encrypion

Proposed by Adi Shamir in 1984.

(he only implemented the identity-based signatures)

First schemes were proposed by Boneh and Franklin
(2001) and, independently Cocks (2001).

In 2002 Boneh started a company

Voltage Security

that produces solutions based on his ID-based scheme.

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or
all of this material is currently granted without fee provided that copies are made
only for personal or classroom use, are not distributed for profit or commercial
advantage, and that new copies bear this notice and the full citation.

