Lecture 4b Hash Functions I

Stefan Dziembowski

www.crypto.edu.pl/Dziembowski

University of Warsaw

version 1.0

Secure communication

we will discus this on the next lecture, but first, we talk about the hash functions

Plan

- 1. Introduction and definitions
- 2. Hash function design paradigms
 - 1. Merkle-Damgård transform
 - 2. Sponge construction

Hash functions

short **H(m)**

a hash function $H: \{0, 1\}^* \rightarrow \{0, 1\}^L$

long **m**

Example of an application: file fingerprinting

Example (ubuntu.com):

64-bit PC (amd64, x86_64) (Recommended)

- 1. Ubuntu 15.10 "Wily Werewolf" 40MB (MD5: d1498749e073ef7fd09f84478f299bea, SHA1: aa659499dc300fe2be00d756180793093cc15014)
- Ubuntu 15.04 "Vivid Vervet" 40MB (MD5: 3b00a4573b11fb1f85eaa05918971789, SHA1: 97282a3b066de4ee4c9409979737f3911f95ceab)

What properties should a hash function *H* have?

<u>Minimal requirement</u>: second preimageresistance:

More precisely, the following problem should be **hard for any efficient adversary** *A*:

- given: "random" $m \in \{0, 1\}^*$
- find: $m' \neq m$ such that H(m) = H(m')

Q: Is it enough?

Second preimage resistance may be in many cases be too weak

What if the adversary can somehow influence the choice of *m*?

For example: Ubuntu has many contributors. What if one of them is malicious?

Idea: modify the definition by allowing the adversary to choose *m* himself.

New game for the adversary:

find: mfind: $m' \neq m$ such that H(m) = H(m') if this problem is hard then a function is called **"collision-resistant**"

find: $m \neq m'$ such that H(m) = H(m')

Collision-resistant hash functions

short **H(m**)

a hash function $H: \{0, 1\}^* \rightarrow \{0, 1\}^L$

long **m**

a "collision"

Requirement: it should be hard to find a pair (m, m') such that H(m) = H(m')

Collisions always exist

"Practical definition"

H is a **collision-resistant hash function** if it is "*practically impossible to find collisions in H*".

Popular hash functions (we will present them in more detail on the next lecture):

- MD5 (now considered broken
- SHA1 (also has weaknesses), SHA256 ∫

based on the Merkle-Damgård transformation

• Keccak based on the sponge construction

Hash functions can also be constructed using mathematical tools like number theory.

How to formally define "collision resitance"?

Idea: Say something like: *H* is a **collision**-**resistant hash function** if

P(A finds a collision in H) is small efficient adversary *A*

Problem

For a fixed **H** there **always exist** a constant-time algorithm that "finds a collision in **H**" in **constant time**.

It may be hard to **<u>find</u>** such an algorithm, but it always exists!

Solution

When we prove theorems we will always consider

<u>families</u> of hash functions indexed by a key <u>s</u>:

 $\{H^s\}_{s\in keys}$

informal description:

informal description:

real-life implementation (example):

Hash functions – the functional definition

A **hash function** is a probabilistic polynomial-time algorithm *H* such that:

H takes as input a key *s* ∈ {0, 1}^{*n*} and a message *m* ∈ {0, 1}* and outputs a string $H^{s}(m) \in \{0, 1\}^{L(n)}$ where *L*(*n*) is some fixed function.

We say that adversary **A** breaks the function **H** if $H^{s}(m) = H^{s}(m')$.

Hash functions – the security definition [2/2]

H is a **collision-resistant hash function** if

P(A breaks H) is negligible

polynomial-time adversary **A**

A weaker requirement: **pre-image resistance**

Intuitively: "it's hard to find a pre-image of **H**^s"

We say that adversary **A** breaks the function **H** if $H^{s}(m) = H^{s}(m')$

Yet another requirement: second pre-image resistance

Intuitively: "it's hard to find a second pre-image of **H**^s"

We say that adversary **A** breaks the function **H** if $m' \neq m$ and $H^s(m) = H^s(m')$

Fact

The following implications hold:

Do collision-resilient hash functions belong to minicrypt?

[D. Simon: Finding Collisions on a One-Way Street: Can Secure Hash Functions Be Based on General Assumptions? 1998]:

there is no "black-box reduction".

Plan

- 1. Introduction and definitions
- 2. Hash function design paradigms
 - 1. Merkle-Damgård transform
 - 2. Sponge construction

A common method for constructing hash functions

1. Construct a "*fixed-input-length*" collision-resistant hash function

Call it: a collision-resistant **compression function**.

2. Use it to construct a hash function.

This doesn't work...

Why is it wrong?

If we set m' = m || 0000 then H(m') = H(m).

Solution: add a block encoding "*t*".

Merkle-Damgård transform

This construction is secure

We would like to prove the following:

But wait.... It doesn't make sense...

What to do?

To be formal, we would need to consider families of functions *h* and *H* indexed by key *s*

Let's stay on the **informal level** and argue that: "if one can find a collision in *H* then one can find a collision in *h*"

How to compute a collision (*x*, *y*) in *h* from a collision (*m*, *m*') in *H*?

We consider two cases:

- 1. |m| = |m'|
- 2. $|m| \neq |m'|$

Case 1: |m| = |m'|

Some notation:

$|\boldsymbol{m}| = |\boldsymbol{m}'|$

For *m*':

So, we have found a collision!

Case 2: $|m| \neq |m'|$

So, again we have found a collision!

Plan

- 1. Introduction and definitions
- 2. Hash function design paradigms
 - 1. Merkle-Damgård transform
 - 2. Sponge construction

Sponge construction (used in Keccak)

main parameters:

- **c** "capacity"
- **r** "rate"
- $b \coloneqq c + r$ "state width"

main ingredient: a function $f: \{0, 1\}^{r+c} \rightarrow \{0, 1\}^{r+c}$

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.