
Lecture 4b
Hash Functions I

24.10.18 version 1.0

Stefan Dziembowski
www.crypto.edu.pl/Dziembowski

University of Warsaw

Secure communication

encryption authentication

private key private key
encryption

private key
authentication

public key public key
encryption

signatures

1

3

2

4

we will discus this on the next lecture,
but first, we talk about the hash

functions

Plan

1. Introduction and definitions

2. Hash function design paradigms
1. Merkle-Damgård transform

2. Sponge construction

Hash functions

a hash function
𝑯: 𝟎, 𝟏 ∗ → {𝟎, 𝟏}𝑳

short 𝑯(𝒎)

long 𝒎

Example of an application: file fingerprinting

large file 𝑭

𝑯

𝒙 = 𝑯(𝑭)
“fingerprint”

(publish this through a secure channel)

everybody who downloads 𝑭 can
verify its correctness by

computing 𝑭(𝑯) and comparing
with 𝒙.

Example
(ubuntu.com):

What properties should a hash
function 𝑯 have?

Minimal requirement: second preimage-
resistance:

More precisely, the following problem should be
hard for any efficient adversary 𝑨:

• given: “random” 𝒎 ∈ 𝟎, 𝟏 ∗

• find: 𝒎′ ≠ 𝒎 such that
𝑯 𝒎 = 𝑯(𝒎′)

Q: Is it enough?

Second preimage resistance may
be in many cases be too weak
What if the adversary can somehow influence the choice of 𝒎?

For example: Ubuntu has many contributors. What if one of
them is malicious?

Idea: modify the definition by allowing the adversary to
choose 𝒎 himself.

New game for the adversary:

find: 𝒎
find: 𝒎′ ≠ 𝒎 such that

𝑯 𝒎 = 𝑯(𝒎′)

find: 𝒎 ≠𝒎′ such that
𝑯 𝒎 = 𝑯(𝒎′)

⇔

if this problem is hard then a
function is called

“collision-resistant”

Collision-resistant hash functions

a hash function
𝑯: 𝟎, 𝟏 ∗ → {𝟎, 𝟏}𝑳

short 𝑯(𝒎)

long 𝒎

Requirement: it should be hard to find a pair (𝒎,𝒎’) such that
𝑯(𝒎) = 𝑯(𝒎’)

a “collision”

Collisions always exist

domain
range

𝒎

𝒎’

Since the domain is larger
than the range the

collisions have to exist.

“Practical definition”

𝑯 is a collision-resistant hash function if it is
“practically impossible to find collisions in 𝑯”.

Popular hash functions (we will present them in more
detail on the next lecture):

• MD5 (now considered broken

• SHA1 (also has weaknesses), SHA256

• Keccak

Hash functions can also be constructed using mathematical tools
like number theory.

based on the Merkle-
Damgård
transformation

based on the sponge
construction

Problem

For a fixed 𝑯 there always exist a constant-time algorithm that
“finds a collision in 𝑯” in constant time.

It may be hard to find such an algorithm, but it always exists!

How to formally define “collision resitance”?

Idea: Say something like: 𝑯 is a collision-
resistant hash function if

∀
efficient

adversary 𝑨

𝑷(𝑨 𝐟𝐢𝐧𝐝𝐬 𝐚 𝐜𝐨𝐥𝐥𝐢𝐬𝐢𝐨𝐧 𝐢𝐧 𝑯) is small

families of hash functions

indexed by a key 𝒔:

𝑯𝒔
𝒔∈keys

Solution

When we prove theorems we will always consider

𝑯

𝑯

𝑯

𝑯𝒔

𝑯𝒔

𝑯𝒔

𝒔

formal model:

informal description:
“knows 𝑯”

𝒔 is chosen
randomly

a protocol

a protocol

𝑯

H

𝑯

SHA1

SHA1

SHA1

real-life implementation (example):

informal description:
“knows 𝑯”

“knows SHA1”

𝑯

a protocol

a protocol

𝑯 takes as input a key 𝒔 ∈ {𝟎, 𝟏}𝒏 and a message
𝒎 ∈ 𝟎, 𝟏 ∗ and outputs a string

𝑯𝒔 𝒎 ∈ 𝟎, 𝟏 𝑳(𝒏)

where 𝑳(𝒏) is some fixed function.

Hash functions – the functional definition

A hash function is a probabilistic polynomial-time
algorithm 𝑯 such that:

Hash functions – the security definition [1/2]

𝟏𝒏

selects a
random
𝒔 є {𝟎, 𝟏}𝒏

𝒔

outputs (𝒎,𝒎’)

We say that adversary 𝑨 breaks the function 𝑯 if
𝑯𝒔(𝒎) = 𝑯𝒔(𝒎’).

𝑯 is a collision-resistant hash function if

Hash functions – the security definition [2/2]

∀
polynomial-time

adversary 𝑨

𝑷(𝑨 𝐛𝐫𝐞𝐚𝐤𝐬 𝑯) is negligible

A weaker requirement: pre-image
resistance

Intuitively: “it’s hard to find a pre-image of 𝑯𝒔”

Main difference:

𝟏𝒏

selects random
𝒔 ← 𝟎, 𝟏 𝒏

𝒎 ← 𝟎, 𝟏 𝒏
𝒔,𝑯𝒔(𝒎)

outputs 𝒎′

We say that adversary A breaks the function 𝑯 if
𝑯𝒔 𝒎 = 𝑯𝒔(𝒎′)

Yet another requirement:
second pre-image resistance

Intuitively: “it’s hard to find a second pre-image of 𝑯𝒔”

𝟏𝒏

selects random
𝒔 ← 𝟎, 𝟏 𝒏

𝒎 ← 𝟎, 𝟏 𝒏
𝒔,𝒎

outputs 𝒎′

We say that adversary A breaks the function 𝑯 if
𝒎′ ≠ 𝒎 and 𝑯𝒔 𝒎 = 𝑯𝒔(𝒎′)

Fact

The following implications hold:

𝑯 is collision resistant

𝑯 is second preimage resistant

𝑯 is pre-image resistant

Do collision-resilient hash functions
belong to minicrypt?

[D. Simon: Finding Collisions on a One-Way
Street: Can Secure Hash Functions Be Based on
General Assumptions? 1998]:

there is no “black-box reduction”.

collision-resilient hash
functions exist

one-way functions
exist

? open problem
easy exercise

Plan

1. Introduction and definitions

2. Hash function design paradigms
1. Merkle-Damgård transform

2. Sponge construction

A common method for constructing
hash functions

1. Construct a “fixed-input-length” collision-resistant hash
function

Call it: a collision-resistant compression function.

2. Use it to construct a hash function.

𝒉: 𝟎, 𝟏 𝟐⋅𝑳 → {𝟎, 𝟏}𝑳

𝒉(𝒎)

𝒎

𝑳

𝟐 · 𝑳

An idea

𝒎

𝒉 𝒉

𝒎𝟏

𝒉

𝒎𝟐 𝒎𝑩

𝐈𝐕

𝟎𝟎𝟎𝟎

pad with zeroes
if needed

. . .

𝒕

𝒎𝒊 ∈ {𝟎, 𝟏}𝑳

𝑯(𝒎)

can be arbitrary

This doesn’t work...

. . .

Why is it wrong?

𝒎

𝒎𝟏 𝒎𝟐 𝒎𝑩

𝟎𝟎𝟎𝟎

𝒕

If we set 𝒎’ = 𝒎 || 𝟎𝟎𝟎𝟎 then 𝑯(𝒎’) = 𝑯(𝒎).

Solution: add a block encoding “𝒕”.

𝒎’

𝒎𝟏
′ 𝒎𝟐

′ 𝒎𝑩
′

𝟎𝟎𝟎𝟎

𝒕

𝒎𝑩+𝟏
′ = 𝒕

. . .

. . .

Merkle-Damgård transform

𝒎

𝒉 𝒉 𝒉

𝒎𝟏

𝒉

𝒎𝟐 𝒎𝑩 𝒎𝑩+𝟏 = 𝒕

𝐈𝐕

𝟎𝟎𝟎𝟎

. . .

𝒕

given 𝒉 ∶ {𝟎, 𝟏}𝟐𝑳 → {𝟎, 𝟏}𝑳

we construct 𝑯: 𝟎, 𝟏 ∗ → {𝟎, 𝟏}𝑳

𝒎𝒊 ∈ {𝟎, 𝟏} 𝑳

𝑯(𝒎)

doesn’t need to be
know in advance

(nice!)

This construction is secure

We would like to prove the following:

If
𝒉: {𝟎, 𝟏}𝟐𝑳 → {𝟎, 𝟏}𝑳

is a collision-resistant compression function
then

𝑯: 𝟎, 𝟏 ∗ → {𝟎, 𝟏}𝑳

is a collision-resistant hash function.

But wait….
It doesn’t make sense…

Theorem

What to do?

To be formal, we would need to consider

families of functions
𝒉 and 𝑯

indexed by key 𝒔

Let’s stay on the informal level and argue that:

“if one can find a collision in 𝑯 then one can find a
collision in 𝒉”

𝑨 breaks 𝑯

𝒂 breaks 𝒉

(𝒎,𝒎’)

a collision in 𝑯

outputs a collision (𝒙, 𝒚) in 𝒉

How to compute a collision (𝒙, 𝒚) in 𝒉
from a collision (𝒎,𝒎’) in 𝑯?

We consider two cases:

1. |𝒎| = |𝒎’|

2. |𝒎| ≠ |𝒎’|

Case 1: |𝒎| = |𝒎’|

𝒎

𝒎𝟏 𝒎𝟐 𝒎𝑩 𝒎𝑩+𝟏 = 𝒕

𝟎𝟎𝟎𝟎

𝒕

𝒎’

𝒎𝟏
′ 𝒎𝟐

′ 𝒎𝑩
′ 𝒎𝑩+𝟏

′ = 𝒕

𝟎𝟎𝟎𝟎

𝒕

|𝒎| = |𝒎’|

𝒎

𝒉 𝒉 𝒉

𝒎𝟏

𝒉

𝒎𝟐 𝒎𝑩 𝒎𝑩+𝟏 = 𝒕

𝒛𝟐
𝐈𝐕

𝟎𝟎𝟎𝟎

. . .

𝑯(𝒎)𝒛𝟏 𝒛𝟑 𝒛𝑩+𝟏𝒛𝑩

Some notation:

𝒎’

𝒉 𝒉 𝒉

𝒎𝟏
′

𝒉

𝒎𝟐
′ 𝒎𝑩

′ 𝒎𝑩+𝟏
′ = 𝒕

𝒛𝟐
′𝐈𝐕

𝟎𝟎𝟎𝟎

. . .

𝑯(𝒎’)𝒛𝟏
′ 𝒛𝟑

′ 𝒛𝑩+𝟏
′

𝒛𝑩
′

For 𝒎’:

|𝒎| = |𝒎’|

𝒛𝟏 = 𝐈𝐕𝒎𝟏

𝒛𝟐𝒎𝟐

𝒛𝑩𝒎𝑩

𝒛𝑩+𝟏𝒎𝑩+𝟏

...

𝒛𝟏
′ = 𝐈𝐕𝒎𝟏

′

𝒛𝟐
′𝒎𝟐

′

𝒛𝑩
′𝒎𝑩

′

𝒛𝑩+𝟏
′𝒎𝑩+𝟏

′

...

equal𝒛𝑩+𝟐 = 𝑯(𝒎) 𝒛𝑩+𝟐
′ = 𝑯(𝒎′)

not equal

𝒛𝟑 𝒛𝟑
′

𝒛𝟏 = 𝐈𝐕𝒎𝟏

𝒛𝟐𝒎𝟐

𝒛𝑩𝒎𝑩

𝒛𝑩+𝟏𝒎𝑩+𝟏

...

𝒛𝟏
′ = 𝐈𝐕𝒎𝟏

′

𝒛𝟐
′𝒎𝟐

′

𝒛𝑩
′𝒎𝑩

′

𝒛𝑩+𝟏
′𝒎𝑩+𝟏

′

...

equal𝒛𝑩+𝟐 = 𝑯(𝒎) 𝒛𝑩+𝟐
′ = 𝑯(𝒎′)

𝒛𝟑 𝒛𝟑
′

Let 𝒊∗ be the least
𝒊 such that

(𝒎𝒊, 𝒛𝒊) = (𝒎𝒊
′, 𝒛𝒊

′)

(because 𝒎 ≠ 𝒎’ such
an 𝒊∗ > 𝟏 always

exists!)

So, we have found a collision!

𝒛𝒊∗−𝟏𝒎𝒊∗−𝟏

𝒛𝒊∗

𝒛𝒊∗−𝟏
′𝒎𝒊∗−𝟏

′

𝒛𝒊∗
′

not equal

equal

𝒉 𝒉

Case 2: |𝒎| ≠ |𝒎’|

𝒛𝑩+𝟏𝒎𝑩+𝟏 𝒛𝑩′+𝟏
′𝒎𝑩′+𝟏

′

equal𝑯(𝒎) 𝑯(𝒎’)

. . .

. . .

the last block encodes
the length on the message

so these values
cannot be equal!

So, again we have found a collision!

Plan

1. Introduction and definitions

2. Hash function design paradigms
1. Merkle-Damgård transform

2. Sponge construction

Sponge construction (used in Keccak)

𝒑𝟎 𝒑𝟏 𝒑ℓ

𝒎 1𝟎𝟎…𝟎𝟏

𝒇

𝒓

𝒄

main parameters:
𝒄 – “capacity”
𝒓 – “rate”
𝒃 ≔ 𝒄 + 𝒓 – “state width”

main ingredient:
a function 𝒇: 𝟎, 𝟏 𝒓+𝒄 → 𝟎, 𝟏 𝒓+𝒄

first step: input processing:
pad if needed with 𝟏𝟎∗𝟏

𝒓 𝒓 𝒓

divide 𝒎 as:

Second step
(𝟎
,…

,𝟎
)

(𝟎
,…

,𝟎
) 𝒇

⊕

𝒑𝟎

𝒓

𝒄

𝒇

⊕

𝒑𝟏

𝒇

⊕

𝒑ℓ

𝒇 𝒇

𝒛𝟎 𝒛𝟏

…

…

…

…

“absorbing” “squeezing”

“output”

truncate if needed
note: “unlimited” length

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or
all of this material is currently granted without fee provided that copies are made
only for personal or classroom use, are not distributed for profit or commercial
advantage, and that new copies bear this notice and the full citation.

