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we will discus this on the next lecture, 
but first, we talk about the hash 

functions
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1. Introduction and definitions

2. Hash function design paradigms
1. Merkle-Damgård transform

2. Sponge construction



Hash functions

a hash function
𝑯: 𝟎, 𝟏 ∗ → {𝟎, 𝟏}𝑳

short 𝑯(𝒎)

long 𝒎



Example of an application: file fingerprinting

large file 𝑭

𝑯

𝒙 = 𝑯(𝑭)
“fingerprint”

(publish this through a secure channel)

everybody who downloads 𝑭 can 
verify its correctness by 

computing 𝑭(𝑯) and comparing 
with 𝒙.

Example
(ubuntu.com):



What properties should a hash 
function 𝑯 have?

Minimal requirement: second preimage-
resistance:

More precisely, the following problem should be 
hard for any efficient adversary 𝑨:

• given: “random” 𝒎 ∈ 𝟎, 𝟏 ∗

• find: 𝒎′ ≠ 𝒎 such that 
𝑯 𝒎 = 𝑯(𝒎′)

Q: Is it enough?



Second preimage resistance may 
be in many cases be too weak 
What if the adversary can somehow influence the choice of 𝒎?

For example: Ubuntu has many contributors. What if one of 
them is malicious?

Idea: modify the definition by allowing the adversary to 
choose 𝒎 himself.

New game for the adversary:

find: 𝒎
find: 𝒎′ ≠ 𝒎 such that 

𝑯 𝒎 = 𝑯(𝒎′)

find: 𝒎 ≠𝒎′ such that 
𝑯 𝒎 = 𝑯(𝒎′)

⇔

if this problem is hard then a 
function is called 

“collision-resistant”



Collision-resistant hash functions

a hash function
𝑯: 𝟎, 𝟏 ∗ → {𝟎, 𝟏}𝑳

short 𝑯(𝒎)

long 𝒎

Requirement: it should be hard to find a pair (𝒎,𝒎’) such that 
𝑯(𝒎) = 𝑯(𝒎’)

a “collision”



Collisions always exist

domain
range

𝒎

𝒎’

Since the domain is larger 
than the range the 

collisions have to exist.



“Practical definition”

𝑯 is a collision-resistant hash function if it is 
“practically impossible to find collisions in 𝑯”.

Popular hash functions (we will present them in more 
detail on the next lecture):

• MD5 (now considered broken

• SHA1 (also has weaknesses), SHA256

• Keccak

Hash functions can also be constructed using mathematical tools 
like number theory.

based on the Merkle-
Damgård 
transformation

based on the sponge 
construction



Problem

For a fixed 𝑯 there always exist a constant-time algorithm that 
“finds a collision in 𝑯” in constant time.

It may be hard to find such an algorithm, but it always exists!

How to formally define “collision resitance”?

Idea: Say something like: 𝑯 is a collision-
resistant hash function if

∀
efficient

adversary 𝑨

𝑷(𝑨 𝐟𝐢𝐧𝐝𝐬 𝐚 𝐜𝐨𝐥𝐥𝐢𝐬𝐢𝐨𝐧 𝐢𝐧 𝑯) is small



families of hash functions

indexed by a key 𝒔:

𝑯𝒔
𝒔∈keys

Solution

When we prove theorems we will always consider 



𝑯

𝑯

𝑯

𝑯𝒔

𝑯𝒔

𝑯𝒔

𝒔

formal model:

informal description:
“knows 𝑯”

𝒔 is chosen
randomly

a protocol

a protocol



𝑯

H

𝑯

SHA1

SHA1

SHA1

real-life implementation (example):

informal description:
“knows 𝑯”

“knows SHA1”

𝑯

a protocol

a protocol



𝑯 takes as input a key 𝒔 ∈ {𝟎, 𝟏}𝒏 and a message 
𝒎 ∈ 𝟎, 𝟏 ∗ and outputs a string

𝑯𝒔 𝒎 ∈ 𝟎, 𝟏 𝑳(𝒏)

where 𝑳(𝒏) is some fixed function.

Hash functions – the functional definition

A hash function is a probabilistic polynomial-time 
algorithm 𝑯 such that:



Hash functions – the security definition [1/2]

𝟏𝒏

selects a 
random
𝒔 є {𝟎, 𝟏}𝒏

𝒔

outputs (𝒎,𝒎’)

We say that adversary 𝑨 breaks the function 𝑯 if 
𝑯𝒔(𝒎) = 𝑯𝒔(𝒎’).



𝑯 is a collision-resistant hash function if

Hash functions – the security  definition [2/2]

∀
polynomial-time

adversary 𝑨

𝑷(𝑨 𝐛𝐫𝐞𝐚𝐤𝐬 𝑯) is negligible



A weaker requirement: pre-image 
resistance 

Intuitively: “it’s hard to find a pre-image of 𝑯𝒔”

Main difference:

𝟏𝒏

selects random
𝒔 ← 𝟎, 𝟏 𝒏

𝒎 ← 𝟎, 𝟏 𝒏
𝒔,𝑯𝒔(𝒎)

outputs 𝒎′

We say that adversary A breaks the function 𝑯 if 
𝑯𝒔 𝒎 = 𝑯𝒔(𝒎′)



Yet another requirement:
second pre-image resistance 

Intuitively: “it’s hard to find a second pre-image of 𝑯𝒔”

𝟏𝒏

selects random
𝒔 ← 𝟎, 𝟏 𝒏

𝒎 ← 𝟎, 𝟏 𝒏
𝒔,𝒎

outputs 𝒎′

We say that adversary A breaks the function 𝑯 if 
𝒎′ ≠ 𝒎 and 𝑯𝒔 𝒎 = 𝑯𝒔(𝒎′)



Fact

The following implications hold:

𝑯 is collision resistant

𝑯 is second preimage resistant

𝑯 is pre-image resistant



Do collision-resilient hash functions 
belong to minicrypt?

[D. Simon: Finding Collisions on a One-Way 
Street: Can Secure Hash Functions Be Based on 
General Assumptions? 1998]:

there is no “black-box reduction”.

collision-resilient hash 
functions exist

one-way functions
exist

? open problem
easy exercise
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A common method for constructing 
hash functions

1. Construct a “fixed-input-length” collision-resistant hash 
function

Call it: a collision-resistant compression function.

2. Use it to construct a hash function. 

𝒉: 𝟎, 𝟏 𝟐⋅𝑳 → {𝟎, 𝟏}𝑳

𝒉(𝒎)

𝒎

𝑳

𝟐 · 𝑳



An idea

𝒎

𝒉 𝒉

𝒎𝟏

𝒉

𝒎𝟐 𝒎𝑩

𝐈𝐕

𝟎𝟎𝟎𝟎

pad with zeroes
if needed

. . .

𝒕

𝒎𝒊 ∈ {𝟎, 𝟏}𝑳

𝑯(𝒎)

can be arbitrary

This doesn’t work...

. . .



Why is it wrong?

𝒎

𝒎𝟏 𝒎𝟐 𝒎𝑩

𝟎𝟎𝟎𝟎

𝒕

If we set 𝒎’ = 𝒎 || 𝟎𝟎𝟎𝟎 then 𝑯(𝒎’) = 𝑯(𝒎).

Solution: add a block encoding “𝒕”.

𝒎’

𝒎𝟏
′ 𝒎𝟐

′ 𝒎𝑩
′

𝟎𝟎𝟎𝟎

𝒕

𝒎𝑩+𝟏
′ = 𝒕

. . .

. . .



Merkle-Damgård transform

𝒎

𝒉 𝒉 𝒉

𝒎𝟏

𝒉

𝒎𝟐 𝒎𝑩 𝒎𝑩+𝟏 = 𝒕

𝐈𝐕

𝟎𝟎𝟎𝟎

. . .

𝒕

given 𝒉 ∶ {𝟎, 𝟏}𝟐𝑳 → {𝟎, 𝟏}𝑳

we construct 𝑯: 𝟎, 𝟏 ∗ → {𝟎, 𝟏}𝑳

𝒎𝒊 ∈ {𝟎, 𝟏} 𝑳

𝑯(𝒎)

doesn’t need to be 
know in advance

(nice!)



This construction is secure

We would like to prove the following:

If 
𝒉: {𝟎, 𝟏}𝟐𝑳 → {𝟎, 𝟏}𝑳

is a collision-resistant compression function
then  

𝑯: 𝟎, 𝟏 ∗ → {𝟎, 𝟏}𝑳

is a collision-resistant hash function.

But wait….
It doesn’t make sense…

Theorem



What to do?

To be formal, we would need to consider 

families of functions
𝒉 and 𝑯

indexed by key 𝒔

Let’s stay on the informal level and argue that:

“if one can find a collision in 𝑯 then one can find a 
collision in 𝒉”



𝑨 breaks 𝑯

𝒂 breaks 𝒉

(𝒎,𝒎’)

a collision in 𝑯

outputs a collision (𝒙, 𝒚) in 𝒉



How to compute a collision (𝒙, 𝒚) in 𝒉
from a collision (𝒎,𝒎’) in 𝑯?

We consider two cases:

1. |𝒎| = |𝒎’|

2. |𝒎| ≠ |𝒎’|



Case 1: |𝒎| = |𝒎’|

𝒎

𝒎𝟏 𝒎𝟐 𝒎𝑩 𝒎𝑩+𝟏 = 𝒕

𝟎𝟎𝟎𝟎

𝒕

𝒎’

𝒎𝟏
′ 𝒎𝟐

′ 𝒎𝑩
′ 𝒎𝑩+𝟏

′ = 𝒕

𝟎𝟎𝟎𝟎

𝒕



|𝒎| = |𝒎’|

𝒎

𝒉 𝒉 𝒉

𝒎𝟏

𝒉

𝒎𝟐 𝒎𝑩 𝒎𝑩+𝟏 = 𝒕

𝒛𝟐
𝐈𝐕

𝟎𝟎𝟎𝟎

. . .

𝑯(𝒎)𝒛𝟏 𝒛𝟑 𝒛𝑩+𝟏𝒛𝑩

Some notation:



𝒎’

𝒉 𝒉 𝒉

𝒎𝟏
′

𝒉

𝒎𝟐
′ 𝒎𝑩

′ 𝒎𝑩+𝟏
′ = 𝒕

𝒛𝟐
′𝐈𝐕

𝟎𝟎𝟎𝟎

. . .

𝑯(𝒎’)𝒛𝟏
′ 𝒛𝟑

′ 𝒛𝑩+𝟏
′

𝒛𝑩
′

For 𝒎’:

|𝒎| = |𝒎’|



𝒛𝟏 = 𝐈𝐕𝒎𝟏

𝒛𝟐𝒎𝟐

𝒛𝑩𝒎𝑩

𝒛𝑩+𝟏𝒎𝑩+𝟏

...

𝒛𝟏
′ = 𝐈𝐕𝒎𝟏

′

𝒛𝟐
′𝒎𝟐

′

𝒛𝑩
′𝒎𝑩

′

𝒛𝑩+𝟏
′𝒎𝑩+𝟏

′

...

equal𝒛𝑩+𝟐 = 𝑯(𝒎) 𝒛𝑩+𝟐
′ = 𝑯(𝒎′)

not equal

𝒛𝟑 𝒛𝟑
′



𝒛𝟏 = 𝐈𝐕𝒎𝟏

𝒛𝟐𝒎𝟐

𝒛𝑩𝒎𝑩

𝒛𝑩+𝟏𝒎𝑩+𝟏

...

𝒛𝟏
′ = 𝐈𝐕𝒎𝟏

′

𝒛𝟐
′𝒎𝟐

′

𝒛𝑩
′𝒎𝑩

′

𝒛𝑩+𝟏
′𝒎𝑩+𝟏

′

...

equal𝒛𝑩+𝟐 = 𝑯(𝒎) 𝒛𝑩+𝟐
′ = 𝑯(𝒎′)

𝒛𝟑 𝒛𝟑
′

Let 𝒊∗ be the least 
𝒊 such that

(𝒎𝒊, 𝒛𝒊) = (𝒎𝒊
′, 𝒛𝒊

′)

(because 𝒎 ≠ 𝒎’ such 
an 𝒊∗ > 𝟏 always 

exists!)



So, we have found a collision!

𝒛𝒊∗−𝟏𝒎𝒊∗−𝟏

𝒛𝒊∗

𝒛𝒊∗−𝟏
′𝒎𝒊∗−𝟏

′

𝒛𝒊∗
′

not equal

equal

𝒉 𝒉



Case 2: |𝒎| ≠ |𝒎’|

𝒛𝑩+𝟏𝒎𝑩+𝟏 𝒛𝑩′+𝟏
′𝒎𝑩′+𝟏

′

equal𝑯(𝒎) 𝑯(𝒎’)

. . .

. . .

the last block encodes
the length on the message

so these values
cannot be equal!

So, again we have found a collision!
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Sponge construction (used in Keccak)

𝒑𝟎 𝒑𝟏 𝒑ℓ

𝒎 1𝟎𝟎…𝟎𝟏

𝒇

𝒓

𝒄

main parameters:
𝒄 – “capacity”
𝒓 – “rate”
𝒃 ≔ 𝒄 + 𝒓 – “state width”

main ingredient:
a function 𝒇: 𝟎, 𝟏 𝒓+𝒄 → 𝟎, 𝟏 𝒓+𝒄

first step: input processing:
pad if needed with 𝟏𝟎∗𝟏

𝒓 𝒓 𝒓

divide 𝒎 as:



Second step
(𝟎
,…

,𝟎
)

(𝟎
,…

,𝟎
) 𝒇

⊕

𝒑𝟎

𝒓

𝒄

𝒇

⊕

𝒑𝟏

𝒇

⊕

𝒑ℓ

𝒇 𝒇

𝒛𝟎 𝒛𝟏

…

…

…

…

“absorbing” “squeezing”

“output”

truncate if needed
note: “unlimited” length
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