
Lecture 10

Signature Schemes

5.12.18 version 1.1

Stefan Dziembowski
www.crypto.edu.pl/Dziembowski

University of Warsaw

http://www.crypto.edu.pl/Dziembowski

Plan

1. The definition of secure signature
schemes

2. Signatures based on RSA, “hash-and-
sign”, “full-domain-hash”

3. Constructions based on discrete log
a) identification schemes

b) Schnorr signatures

c) DSA signatures

4. Theoretical constructions

Signature schemes

digital signature schemes

≈
MACs in the public-key setting

Message Authentication Codes

𝐀𝐥𝐢𝐜𝐞 Bob

(𝒎, 𝒕 = 𝐓𝐚𝐠𝒌(𝒎))

𝒌 𝒌

𝒎
checks if

𝐕𝐫𝐟𝐲𝒌 𝒎, 𝒕 ∈ {𝐲𝐞𝐬, 𝐧𝐨}

𝒌 is chosen randomly
from some set K

Signatures

• 𝒔𝒌 is used for computing a
tag,

• 𝒑𝒌 is used for verifying
correctness of the tag.

Alice Bob

𝒌 𝒌

𝒎 (𝒎, 𝒕 ∶= 𝐓𝐚𝐠(𝒌,𝒎)) 𝐕𝐫𝐟𝐲(𝒌,𝒎, 𝒕)

(𝒎, 𝒕 ∶= 𝐒𝐢𝐠𝐧(𝒔𝒌,𝒎)) 𝐕𝐫𝐟𝐲(𝒑𝒌,𝒎, 𝒕)

𝒑𝒌𝒔𝒌

this will be called
“signatures”

Sign – the signing
algorithm

𝒑𝒌, 𝒔𝒌 ← 𝐆𝐞𝐧 𝟏𝒏

1. publicly verifiable,
2. transferable, and
3. provide non-repudiation

Advantages of the signature schemes

Digital signatures are:

(we explained it on Lecture 7, we now
present the formal definition)

Signature Schemes

Alice Bob

𝒎
(𝒎,𝝈:= 𝐒𝐢𝐠𝐧(𝒔𝒌,𝒎)) 𝐕𝐫𝐟𝐲(𝒑𝒌,𝒎, 𝝈)

𝒑𝒌𝒔𝒌

𝒑𝒌, 𝒔𝒌 ← 𝐆𝐞𝐧 𝟏𝒏

Digital Signature Schemes

A digital signature scheme is a tuple (𝐆𝐞𝐧, 𝐒𝐢𝐠𝐧, 𝐕𝐫𝐟𝐲) of poly-
time algorithms, such that:

• the key-generation algorithm Gen takes as input a security
parameter 𝟏𝒏 and outputs a pair (𝒑𝒌, 𝒔𝒌),

• the signing algorithm Sign takes as input a key 𝒔𝒌 and a
message 𝒎 ∈ 𝟎, 𝟏 ∗ and outputs a signature 𝝈,

• the verification algorithm Vrfy takes as input a key 𝒑𝒌, a
message 𝒎 and a signature 𝝈, and outputs a bit 𝒃 ∈ {𝐲𝐞𝐬, 𝐧𝐨}.

If 𝐕𝐫𝐟𝐲𝒑𝒌(𝒎, 𝝈) = 𝐲𝐞𝐬 then we say that 𝝈 is a valid signature on
the message 𝒎.

Correctness

We require that it always holds that:

𝑷(𝐕𝐫𝐟𝐲𝒑𝒌(𝒎, 𝐒𝐢𝐠𝐧𝒔𝒌(𝒎)) ≠ 𝒚𝒆𝒔) is negligible in n

What remains is to define security.

Good tradition: be as pessimistic as possible!

Therefore we assume that:

1. The adversary is allowed to chose 𝒎𝟏, … ,𝒎𝒕.

2. The goal of the adversary is to produce a valid signature on
some 𝒎’ such that 𝒎’ ∉ {𝒎𝟏, … ,𝒎𝒕}.

How to define security?
We have to assume that the adversary can see some pairs

(𝒎𝟏, 𝝈𝟏), … , (𝒎𝒕, 𝝈𝒕)

As in the case of MACs, we need to specify:

1. how the messages 𝒎𝟏, … ,𝒎𝒕 are chosen,

2. what is the goal of the adversary.

security parameter
𝟏𝒏

selects 𝒑𝒌, 𝒔𝒌 ← 𝐆𝐞𝐧(𝟏𝒏)

oracle

𝒎𝟏

𝒎𝒕

...
We say that the adversary breaks the signature scheme if at the
end she outputs (𝒎’, 𝝈’) such that

1. 𝐕𝐫𝐟𝐲(𝒎’, 𝝈’) = 𝐲𝐞𝐬
2. 𝒎’ ∉ {𝒎𝟏, … ,𝒎𝒕}.

adversary

𝒑𝒌

𝐒𝐢𝐠𝐧𝒔𝒌(𝒎𝟏)

𝐒𝐢𝐠𝐧𝒔𝒌 𝒎𝒕

The security definition

We say that (𝐆𝐞𝐧, 𝐒𝐢𝐠𝐧, 𝐕𝐫𝐟𝐲) is existentially
unforgeable under an adaptive chosen-message
attack if

∀
polynomial-time

adversary 𝑨

𝑷(𝑨 𝐛𝐫𝐞𝐚𝐤𝐬 𝐢𝐭) is negligible (in 𝒏)

sometimes we just say: unforgeable (if the context is clear)

We said: In general it’s not that simple.

How to construct signature schemes?

𝐄𝒑𝒌 ∶ 𝑿 → 𝑿 𝒑𝒌 ∈ 𝐤𝐞𝐲𝐬 - a family of

trapdoor permutations indexed by 𝒑𝒌

Remember this idea?

signatures messages

𝐃𝒔𝒌(𝒎)

𝐄𝒑𝒌(𝒎)

one can compute it
only if one knows 𝒔𝒌

signing:

verifying:

compare the result

One can even construct a signature scheme from any
one-way function.
(this is a theoretical construction)

There exist other ways to create signature schemes.

Not every trapdoor permutation is OK.

In general it’s not that simple

example: the RSA function

Plan

1. The definition of secure signature
schemes

2. Signatures based on RSA, “hash-and-
sign”, “full-domain-hash”

3. Constructions based on discrete log
a) identification schemes

b) Schnorr signatures

c) DSA signatures

4. Theoretical constructions

The “handbook RSA signatures”

𝑵 = 𝒑𝒒, such that 𝒑 and 𝒒 are random primes,
and |𝒑| = |𝒒|

𝒆 – random such that 𝒆 ⊥ (𝒑 − 𝟏)(𝒒 − 𝟏)
𝒅 – such that 𝒆𝒅 = 𝟏 (𝐦𝐨𝐝 (𝒑 − 𝟏)(𝒒 − 𝟏))

messages and signatures: 𝒁𝑵
• 𝝈 ≔ 𝐒𝐢𝐠𝐧𝑵,𝒅 𝒎 = 𝒎𝒅 𝐦𝐨𝐝 𝑵

• 𝐕𝐫𝐟𝐲𝑵,𝒆 𝒎,𝝈 = output yes iff 𝝈𝒆𝐦𝐨𝐝 𝑵 = 𝒎

Problems with the “handbook RSA” [1/2]

The adversary can forge a signature on a “random”
message 𝒎.

Given the public key (𝑵, 𝒆):
he just selects a random 𝝈 ← 𝒁𝑵 and computes

𝒎≔ 𝝈𝒆𝒎𝒐𝒅 𝑵.

Trivially, 𝝈 is a valid signature on 𝒎.

“no-message attack”:

Problems with the “handbook RSA” [2/2]

How to forge a signature on an arbitrary message 𝒎?

Use the homomorphic properties of RSA.

oracle

𝒎𝟏adversary

𝐒𝐢𝐠𝐧𝒔𝒌(𝒎𝟏) = 𝒎𝟏
𝒅 𝐦𝐨𝐝 𝑵

𝐒𝐢𝐠𝐧𝒔𝒌(𝒎𝟐) = 𝒎𝟐
𝒅 𝐦𝐨𝐝 𝑵

(𝑵, 𝒆)

chooses:
1. any 𝒎𝟏 ≠ 𝟏
2. 𝒎𝟐 ∶= 𝒎/𝒎𝟏𝐦𝐨𝐝 𝑵 𝒎𝟐

computes (𝐦𝐨𝐝 𝑵):

𝒎𝟏
𝒅 ⋅ 𝒎𝟐

𝒅

= (𝒎𝟏 · 𝒎𝟐)
𝒅

= 𝒎𝒅

this is a valid signature on 𝒎

In many applications – probably not.

Is it a problem?

But we would like to have schemes that are not
application-dependent...

Solution

Before computing the RSA function – apply some function 𝑯.

𝑵 = 𝒑𝒒, such that 𝒑 and 𝒒 are random primes,
and |𝒑| = |𝒒|

𝒆 – random such that 𝒆 ⊥ (𝒑 − 𝟏)(𝒒 − 𝟏)
𝒅 – such that 𝒆𝒅 = 𝟏 (𝐦𝐨𝐝 (𝒑 − 𝟏)(𝒒 − 𝟏))

messages and signatures: 𝒁𝑵

• 𝝈 ≔ 𝐒𝐢𝐠𝐧𝑵,𝒅 𝒎 = 𝑯 𝒎
𝒅
𝐦𝐨𝐝 𝑵

• 𝐕𝐫𝐟𝐲𝑵,𝒆 𝒎,𝝈 = output yes iff 𝝈𝒆𝐦𝐨𝐝 𝑵 = 𝑯(𝒎)

(because if the adversary can find two messages 𝒎,𝒎’
such that

𝑯(𝒎) = 𝑯(𝒎’)
then he can forge a signature on 𝒎’ by asking the oracle

for a signature on 𝒎)

How to choose such 𝑯?

A minimal requirement:

it should be collision-resistant.

Additional advantage:

We can sign very long messages keeping the modulus
𝑵 small (it’s much more efficient!) – we will come back
to it later.

It is called a

hash-and-sign paradigm.

A typical choice of 𝑯

Usually 𝑯 is one of the popular hash functions.

Hash-and-Sign [1/4]
1. (𝐆𝐞𝐧, 𝐒𝐢𝐠𝐧, 𝐕𝐫𝐟𝐲) – a signature scheme “for short messages”

short 𝒙

signature 𝝈

𝐒𝐢𝐠𝐧𝒔𝒌

𝝈

𝐲𝐞𝐬 / 𝐧𝐨

𝐕𝐫𝐟𝐲𝒑𝒌

𝒙

𝒎

2. a hash function 𝑯

𝑯

𝑯(𝒎)

Hash-and-Sign [2/4]

signature 𝐒𝐢𝐠𝐧𝒔𝒌 (𝑯(𝒎))

𝐒𝐢𝐠𝐧𝒔𝒌

𝒎

𝑯

𝑯(𝒎)

How to sign a message 𝒎?

Hash-and-Sign [3/4]
How to verify?

𝝈

yes / no

𝐕𝐫𝐟𝐲𝒑𝒌

𝒎

𝑯

𝑯(𝒎)

Then 𝒔 becomes a part of the public key and the private key.

Hash-and-Sign [4/4]

It can be proven that this construction is secure.

For this we need to assume that 𝑯 is taken from a
family of collision-resilient hash functions.

𝑯𝒔
𝒔∈𝐤𝐞𝐲𝐬

But at least the attacks described before “look infeasible”.

Can anything be proven about the
“hashed RSA” scheme?

In the plain model - not really.

1. For the “no message attack”: one would need to invert 𝑯.

2. The second (“homomorphic”) attack:
Looks impossible because the adversary would need to find
messages 𝒎,𝒎𝟏,𝒎𝟐 such that

𝑯(𝒎) = 𝑯(𝒎𝟏) · 𝑯(𝒎𝟐)

𝒁𝑵
∗

𝑯 𝟎, 𝟏 ∗

Why the security proof from the
RSA assumption is impossible?

messages
𝟎, 𝟏 ∗

𝑯: 𝟎, 𝟏 ∗ → 𝒁𝑵
∗

RSA assumption holds for inputs chosen uniformly at
random from 𝒁𝑵

∗
.

But the output of 𝑯 is not “uniformly random”

Solution: “Full Domain Hash” (FDH)

provably secure:

• under the RSA assumption

• and modelling 𝑯 as random oracle.

Introduced in
Bellare and Rogaway. The exact security of digital
signatures: How to sign with RSA and Rabin.
EUROCRYPT’96

Widely used in practice (for example in the PKCS #1
standard)

Fact (security of the Full Domain Hash)

• Let 𝑯: 𝟎, 𝟏 ∗ → 𝒁𝑵
∗ be a hash function modeled as a

random oracle.

• Suppose the RSA assumption holds

Then the “hashed RSA” is existentially unforgeable
under an adaptive chosen-message attack.

Lemma (informal)

Remember the Random Oracle Model?

𝑯 ∶ 𝟎, 𝟏 ∗ → {𝟎, 𝟏}𝑳
a completely random

function

𝒙

𝑯(𝒙)

Why does it help?

here we require that 𝒙 is random

RSA assumption
For any randomized polynomial time algorithm 𝑨 we have:

𝑷 𝒚𝒆 = 𝒙𝐦𝐨𝐝 𝑵: 𝒚 ∶= 𝑨 𝒙,𝑵, 𝒆

is negligible in |𝑵|

where 𝑵 = 𝒑𝒒 where 𝒑 and 𝒒 are random primes such that
|𝒑| = |𝒒|, and 𝒙 is a random element of 𝒁𝑵

∗ ,
and 𝒆 is a random element of 𝒁𝝋 𝑵

∗ .

Intuition

This helps a lot in the proof!

If we just use a “normal hash function” then the distribution of

𝑯(𝒎𝟎), 𝑯(𝒎𝟏), 𝑯(𝒎𝟐), …

(for any 𝒎𝟎,𝒎𝟏,𝒎𝟐, …) can be “arbitrary”.

If 𝑯 is a random oracle then

𝑯(𝒎𝟎),𝑯(𝒎𝟏),𝑯(𝒎𝟐), …

are uniform and independent (for pairwise different 𝒎𝒊’s).

Other popular signature schemes

• Rabin signatures (based on squaring modulo N = pq)

Based on discrete log (usually: in subgroups of 𝒁𝑵
∗ or in

elliptic curves groups):

• ElGamal signatures

• Digital Signature Standard
(DSS)

• Schnorr signatures

can be viewed as
identification
schemes transformed
using Fiat-Shamir
transform.

we will explain it

Plan

1. The definition of secure signature
schemes

2. Signatures based on RSA, “hash-and-
sign”, “full-domain-hash”

3. Constructions based on discrete log
a) identification schemes

b) Schnorr signatures

c) DSA signatures

4. Theoretical constructions

Identification schemes

𝒑𝒌

𝒔𝒌

Everybody who knows 𝒑𝒌 can
verify the identity of the prover

𝒑𝒌, 𝒔𝒌 ← 𝐆𝐞𝐧(𝟏𝒏) – a (public key, private key) pair of prover

verifierprover

verifier’s output:
yes if he believes he is talking to the prover

no – otherwise

Definition

We do not define identification schemes formally.

Informally they have to satisfy the following:

• [correctness] an honest prover should always
convince the verifier

• [security] no poly-time adversary should be able
to impersonate the prover with non-negligible
probability.

What is the attack model?
Let’s assume it’s rather weak:

𝒑𝒌

𝒔𝒌

verifierprover

transcript
𝑻

the adversary learns as many
transcripts 𝑻𝟏, 𝑻𝟐, … as he wants

“learning phase”:

Then he has to win in the following game

verifier

the adversary wins if the
verifier outputs yes

the adversary does not know 𝒔𝒌 but can
produce any messages that he wants

“challenge phase”:

Note

1. The adversary cannot talk to the prover during the
learning phase.

2. The adversary cannot act as a man-in-the middle.

(these problems can be solved, but are not relevant today)

We will come back again to these protocols when we talk
about zero-knowledge.

Schnorr identification scheme

Key generation similar to the one in ElGamal encryption

𝐆𝐞𝐧(𝟏𝒏) first runs GenG to obtain 𝑮,𝒈 and 𝒒 (assume 𝒒 is
prime). Then, it chooses 𝒙 ← 𝒁𝒒 and computes 𝒚:= 𝒈𝒙.

Let 𝐆𝐞𝐧𝐆 be such that discrete log is hard w. r. t. 𝐆𝐞𝐧𝐆.

The public key is (𝑮, 𝒈, 𝒒, 𝒚).
The private key is (𝑮, 𝒈, 𝒒, 𝒙).

The protocol

verifierprover

knows
𝒚 ∶= 𝒈𝒙

knows 𝒙

𝒌 ← 𝒁𝒒
𝑰 ≔ 𝒈𝒌

𝑮 – group, 𝒒 = |𝑮|
𝒈 – generator

𝑰
𝒓 ← 𝒁𝒒

𝒓

𝒔 ≔ 𝒓𝒙 + 𝒌𝐦𝐨𝐝 𝒒

𝒔 output yes iff
𝒈𝒔 ⋅ 𝒚−𝒓 = 𝑰

Why is this protocol correct?

𝒈𝒔 ⋅ 𝒚−𝒓 = 𝒈𝒓𝒙+𝒌 ⋅ 𝒈𝒙 −𝒓

= 𝒈𝒓𝒙+𝒌 ⋅ 𝒈−𝒓𝒙

= 𝒈𝒌

= 𝑰

𝒌 ← 𝒁𝒒
𝑰 ≔ 𝒈𝒌

𝑰
𝒓 ← 𝒁𝒒

𝒓
𝒔 ≔ 𝒓𝒙 + 𝒌𝐦𝐨𝐝 𝒒

𝒔 output yes iff
𝒈𝒔 ⋅ 𝒚−𝒓 = 𝑰

𝒚 ∶= 𝒈𝒙

Security
First, suppose the adversary didn’t see any
transcript. He has to win the following game.

verifier

𝑰
𝒓 ← 𝒁𝒒

𝒓

𝒔 output yes iff
𝒈𝒔 ⋅ 𝒚−𝒓 = 𝑰

Lemma

How to prove it?

We show that for every 𝑰 there exists at most one
𝒓 ∈ 𝒁𝒒 such that the adversary can answer it
correctly (if he cannot compute the discrete log).

(so: his probability of winning is at most 𝟏/𝒒)

If discrete logarithm is hard with respect to 𝐆𝐞𝐧𝐆
then the probability that any poly-time adversary
wins this game is negligible.

Proof by contradiction

Assume there exist 𝒓𝟎 and 𝒓𝟏 such that 𝒓𝟎 ≠ 𝒓𝟏 and
that the adversary knows answers

• 𝒔𝟎 to 𝒓𝟎 and

• 𝒔𝟏 to 𝒓𝟏
where

𝒈𝒔𝟎 ⋅ 𝒚−𝒓𝟎 = 𝑰 = 𝒈𝒔𝟏 ⋅ 𝒚−𝒓𝟏 .

But then
𝒚𝒓𝟏−𝒓𝟎 = 𝒈𝒔𝟏−𝒔𝟎

so

𝒚 = 𝒈
𝒔𝟏−𝒔𝟎
𝒓𝟏−𝒓𝟎

= 𝐥𝐨𝐠𝒈𝒚

This finishes the proof of the lemma.

To finish the full security proof
we need to show the following
Learning the transcripts

(𝑰, 𝒓, 𝒔)

doesn’t help the adversary.

Q: Why is it true?

A: It turns out that the adversary can “simulate” such
transcripts himself (just from 𝒑𝒌).

We now explain it.

How do the transcripts look like?

(𝑰, 𝒓, 𝒔)

where

• 𝑰 = 𝒈𝒌 where 𝒌 ← 𝒁𝒒

• 𝒓 ← 𝒁𝒒

• 𝒔 ≔ 𝒓𝒙 + 𝒌𝐦𝐨𝐝 𝒒

We now show that:

the transcripts with exactly the same distribution
can be sampled by the adversary himself!

How can the adversary do it?
• first sample 𝒓, 𝒔 ← 𝒁𝒒 and

• then compute 𝑰 as
𝑰 = 𝒈𝒔 ⋅ 𝒚−𝒓

Why is the distribution the same?

𝑰 ≔ 𝒈𝒌

𝒓

𝒔

such that
𝒔 ≔ 𝒓𝒙 + 𝒌𝐦𝐨𝐝 𝒒

this is
sampled

this is
sampled

this is
computed

this is
computed

It’s the same!

Therefore

𝒑𝒌

𝒔𝒌

verifierprover

transcript
𝑻

access to the transcripts does
not change anything!

Note the difference

The adversary can produce tuples (𝑰, 𝒓, 𝒔) with the
right distribution

if he``starts from (𝒓, 𝒔)‘’

but he cannot do it

if he has to ``start from 𝑰‘’ and sampling 𝒓 is out of
his control.

Conclusion

The Schnorr protocol is a secure identification
scheme.

But how is this related to the signature schemes?

We now show how to transform any such
identification scheme into a signature scheme.

Plan

1. The definition of secure signature
schemes

2. Signatures based on RSA, “hash-and-
sign”, “full-domain-hash”

3. Constructions based on discrete log
a) identification schemes

b) Schnorr signatures

c) DSA signatures

4. Theoretical constructions

Fiat-Shamir transform: main idea

Suppose we have an identification protocol of this form:

verifierprover 𝑰

random 𝒓

𝒔 ≔ 𝑷(𝑰, 𝒓)

𝒑𝒌

𝒔𝒌

𝒑𝒌, 𝒔𝒌 ← 𝐆𝐞𝐧(𝟏𝒏)

technical assumption:
𝑰 is “reasonably long”, say:

𝑰 = 𝛀(𝒏) compute some
value 𝑽(𝒓, 𝒔) from
𝒓 and 𝒔 and accept
iff 𝑽(𝒓, 𝒔) = 𝑰.

Create a signature scheme as follows
• Let 𝑯: 𝟎, 𝟏 ∗ → 𝟎, 𝟏 |𝒓| be a hash function (modelled as a

random oracle)

• key pair generation – as in the authentication protocol

To sign a message 𝒎 the signing algorithm simulates the
execution of the identification scheme:

𝒔𝒌

𝐒𝐢𝐠𝐧(𝒔𝒌,𝒎)

𝑰
𝒓 = 𝑯(𝑰,𝒎)

the verifier is
“simulated using 𝑯“

𝒓

𝒔

output (𝒓, 𝒔)

How to verify?

𝒔𝒌

𝐒𝐢𝐠𝐧(𝒔𝒌,𝒎)

𝑰
𝒓 = 𝑯(𝑰,𝒎)

𝒓

𝒔
output (𝒓, 𝒔)

Assuming 𝑰 is such that 𝑰, 𝒓, 𝒔 “is a correct transcript” check
if 𝒓 was computed correctly. That is:

let 𝑰 = 𝑽(𝒓, 𝒔)
and check if 𝒓 = 𝑯 𝑰,𝒎

𝐕𝐫𝐟𝐲(𝒑𝒌,𝒎, 𝒓, 𝒔)

output yes iff the prover outputs yes

equivalent
check if

𝒓 = 𝑯 𝑽(𝒓, 𝒔),𝒎

More formally

𝐆𝐞𝐧 – the same as in the identification scheme

𝐒𝐢𝐠𝐧 𝒔𝒌,𝒎 = (𝒓, 𝒔), computed by simulating the prover or
random input as follows:
1. let 𝑰 be the “first message of the prover”
2. let 𝒓 ≔ 𝑯(𝑰,𝒎)
3. let 𝒔 ≔ 𝑷 𝑰, 𝒓 be the “second message of the prover”

(after receiving 𝒓)
4. output (𝒓, 𝒔)

𝐕𝐫𝐟𝐲(𝒑𝒌,𝒎, 𝒓, 𝒔):

output yes iff 𝒓 = 𝑯(𝑽(𝒓, 𝒔),𝒎).

Why does it work?

Correctness is trivial – if the signer is honest then
the verifier will always accept.

What about security?

Security
First look at the learning phase:

In the identification scheme the
adversary learns 𝒑𝒌 and can see
many tuples of a form:

(𝑰, 𝒓, 𝒔)
sampled as follows:
• random 𝑰
• random 𝒓
• 𝒔 ≔ 𝑷(𝑰, 𝒓)

In the signature scheme the
adversary learns 𝒑𝒌 and can see
many tuples of a form:

(𝑰, 𝒓, 𝒔)
sampled as follows:
• random 𝑰
• 𝒓 ≔ 𝑯(𝑰,𝒎)
• 𝒔 ≔ 𝑷(𝑰, 𝒓)

Note:
the adversary chooses 𝒎 but he cannot choose 𝑰, so by the properties of
the random oracle: 𝒓 is completely random.
Moral:
these two experiments are identical!

difference

Now look at the challenge phase

In the signature scheme the
adversary has to find (𝒓, 𝒔) such
that

𝒓 = 𝑯(𝑰,𝒎),

where 𝑰 = 𝑽(𝒓, 𝒔).

To break the authentication
scheme the adversary has to
find 𝑰 such that

after learning random 𝒓
he can find 𝒔

such that:

𝑽 𝒓, 𝒔 = 𝑰

He has to:
choose the value of 𝑰 first,

then he learns 𝒓 = 𝑯(𝑰,𝒎),
and he has to find 𝒔 such

𝑽 𝒓, 𝒔 = 𝑰

since 𝑯 is a random oracle

it’s the same!

because if he chooses 𝒓 first he
will not be able to find the right 𝑰

(remember that 𝑰 is long)

Using this method we can
construct signature schemes

For example:

Schnorr’s
identification

scheme

Schnorr’s
signature
scheme

Fiat-Shamir
paradigm

Schnorr’s signature scheme
𝐆𝐞𝐧(𝟏𝒏) run GenG to obtain 𝑮,𝒈 and 𝒒 (assume 𝒒 is prime).
Then, choose 𝒙 ← 𝒁𝒒 and computes 𝒚:= 𝒈𝒙.

• The public key 𝒑𝒌 is (𝑮, 𝒈, 𝒒, 𝒚).

• The private key 𝒔𝒌 is (𝑮, 𝒈, 𝒒, 𝒙).

𝐒𝐢𝐠𝐧 𝒔𝒌,𝒎 :
1. choose uniform 𝒌 ← 𝒁𝒒 and let 𝑰 ≔ 𝒈𝒌

2. compute 𝒓 ≔ 𝑯(𝑰,𝒎)
3. compute 𝒔 ≔ 𝒓𝒙 + 𝒌𝐦𝐨𝐝 𝒒
4. output (𝒓, 𝒔)

𝐕𝐫𝐟𝐲 𝒑𝒌,𝒎, 𝒓, 𝒔 :

output yes if 𝒓 = 𝑯 𝒈𝒔 ⋅ 𝒚−𝒓,𝒎 .

Plan

1. The definition of secure signature
schemes

2. Signatures based on RSA, “hash-and-
sign”, “full-domain-hash”

3. Constructions based on discrete log
a) identification schemes

b) Schnorr signatures

c) DSA signatures

4. Theoretical constructions

DSS signatures (also called DSA)

• based on a paradigm similar to Schnorr’s
signatures

• can also be viewed as a variant of ElGamal
signatures (1984)

• DSS was covered by an (expired) U.S. Patent
5,231,668 (1991) granted to the US government
(available worldwide royalty-free)

• Schnorr claimed that his U.S. Patent 4,995,082
(1989) covered DSA – this claim is disputed, and
anyway it expired in 2008.

• very widely used in practice!

[we will present this scheme during the exercises]

Note
In Schnorr and DSS signatures it’s very
important that the signer’s randomness is
generated properly [exercise].

Failure to do so can have catastrophic effects:

Plan

1. The definition of secure signature
schemes

2. Signatures based on RSA, “hash-and-
sign”, “full-domain-hash”

3. Constructions based on discrete log
a) identification schemes

b) Schnorr signatures

c) DSA signatures

4. Theoretical constructions

Signatures schemes can be constructed
from any one-way function

signature schemes
exist

one way functions
exist

another member of minicrypt!

One-time signatures (Leslie Lamport)
How to sign one bit?

𝒇 – a one way function

random
𝒙𝟎

𝒚𝟎 = 𝒇(𝒙𝟎)𝒇

random
𝒙𝟏

𝒚𝟏 = 𝒇(𝒙𝟏)𝒇

private key public key

𝐒𝐢𝐠𝐧 𝒙𝟎, 𝒙𝟏 , 𝒃 = 𝒙𝒃
𝐕𝐫𝐟𝐲 𝒚𝟎, 𝒚𝟏 , 𝒃, 𝒙 = 𝐲𝐞𝐬 iff 𝒇(𝒙) = 𝒚𝒃

Why is it secure?

To forge a signature on bit 𝒃 the adversary needs
to calculate 𝒙𝒃 from 𝒚𝒃

𝒙𝒃 𝒚𝒃 = 𝒇(𝒙𝒃)𝒇

This should be infeasible, since 𝒇 is one-way...

Lamport

Constructing Digital Signatures from a One Way Function
SRI International Technical Report CSL-98 (October 1979).

At a coffee house in Berkeley around 1975, Whitfield
Diffie described a problem to me that he had been trying
to solve: constructing a digital signature for a document. I
immediately proposed a solution. Though not very
practical--it required perhaps 64 bits of published key to
sign a single bit--it was the first digital signature
algorithm.

In 1978, Michael Rabin published a paper titled Digitalized
Signatures containing a more practical scheme for
generating digital signatures of documents. (I don't
remember what other digital signature algorithms had
already been proposed.) However, his solution had some
drawbacks that limited its utility.

[...] I didn't feel that it added much to what Rabin had
done. However, I've been told that this paper is cited in
the cryptography literature and is considered
significant, so perhaps I was wrong.

from: research.microsoft.com/en-us/um/people/lamport/

what about
the RSA ???

How to sign longer messages?
We show a one-time signature scheme (one public key can
be used at most once).

𝒇 – one way function

𝒏 – length of the message

private key 𝒔𝒌: public key 𝒑𝒌:

𝐒𝐢𝐠𝐧𝐋𝐚𝐦𝐩𝐨𝐫𝐭 𝒔𝒌, 𝒎𝟎, … ,𝒎𝒏 ≔ 𝒙𝒎𝟎
, … , 𝒙𝒎𝒏

𝐕𝐫𝐟𝐲𝐋𝐚𝐦𝐩𝐨𝐫𝐭 𝒑𝒌, 𝒎𝟎, … ,𝒎𝒏 , 𝒙𝒎𝟎
, … , 𝒙𝒎𝒏

≔

check if 𝒇 𝒙𝒎𝟎
, … , 𝒇 𝒙𝒎𝒏

= 𝒚𝒎𝟎
, … , 𝒚𝒎𝒏

𝒚𝟎,𝟏 = 𝒇(𝒙𝟎,𝟏) . . . 𝒚𝟎,𝒏 = 𝒇(𝒙𝟎,𝒏)

𝒚𝟏,𝟏 = 𝒇(𝒙𝟏,𝟏) . . . 𝒚𝟏,𝒏 = 𝒇(𝒙𝟏,𝒏)

𝒙𝟎,𝟏 . . . 𝒙𝟎,𝒏

𝒙𝟏,𝟏 . . . 𝒙𝟏,𝒏

all 𝒙𝒊𝒋’s are random strings

Example

𝒏 = 𝟔

𝒙𝟎,𝟏 𝒙𝟎,𝟐 𝒙𝟎,𝟑 𝒙𝟎,𝟒 𝒙𝟎,𝟓 𝒙𝟎,𝟔

𝒙𝟏,𝟏 𝒙𝟏,𝟐 𝒙𝟏,𝟑 𝒙𝟏,𝟒 𝒙𝟏,𝟓 𝒙𝟏,𝟔

𝒎 = (𝟏, 𝟎, 𝟏, 𝟏, 𝟎, 𝟎)

signature:

private key:

𝒙𝟏,𝟏 𝒙𝟎,𝟐 𝒙𝟏,𝟑 𝒙𝟏,𝟒 𝒙𝟎,𝟓 𝒙𝟎,𝟔

public key: 𝒇(𝒙𝟎,𝟏) 𝒇(𝒙𝟎,𝟐) 𝒇(𝒙𝟎,𝟑) 𝒇(𝒙𝟎,𝟒) 𝒇(𝒙𝟎,𝟓) 𝒇(𝒙𝟎,𝟔)

𝒇(𝒙𝟏,𝟏) 𝒇(𝒙𝟏,𝟐) 𝒇(𝒙𝟏,𝟑) 𝒇(𝒙𝟏,𝟒) 𝒇(𝒙𝟏,𝟓) 𝒇(𝒙𝟏,𝟔)

Why each key can be used at most once?

𝒙𝟎,𝟏 𝒙𝟎,𝟐 𝒙𝟎,𝟑 𝒙𝟎,𝟒 𝒙𝟎,𝟓 𝒙𝟎,𝟔

𝒙𝟏,𝟏 𝒙𝟏,𝟐 𝒙𝟏,𝟑 𝒙𝟏,𝟒 𝒙𝟏,𝟓 𝒙𝟏,𝟔

private key:

signature: 𝒙𝟏,𝟏 𝒙𝟎,𝟐 𝒙𝟏,𝟑 𝒙𝟏,𝟒 𝒙𝟎,𝟓 𝒙𝟎,𝟔

knows

𝒙𝟎,𝟏 𝒙𝟎,𝟐 𝒙𝟎,𝟑 𝒙𝟎,𝟒 𝒙𝟎,𝟓 𝒙𝟎,𝟔

𝒙𝟏,𝟏 𝒙𝟏,𝟐 𝒙𝟏,𝟑 𝒙𝟏,𝟒 𝒙𝟏,𝟓 𝒙𝟏,𝟔

private key:

signature: 𝒙𝟏,𝟏 𝒙𝟏,𝟐 𝒙𝟏,𝟑 𝒙𝟎,𝟒 𝒙𝟏,𝟓 𝒙𝟏,𝟔

𝒙𝟎,𝟏 𝒙𝟎,𝟐 𝒙𝟎,𝟑 𝒙𝟎,𝟒 𝒙𝟎,𝟓 𝒙𝟎,𝟔

𝒙𝟏,𝟏 𝒙𝟏,𝟐 𝒙𝟏,𝟑 𝒙𝟏,𝟒 𝒙𝟏,𝟓 𝒙𝟏,𝟔

private key:

signature: 𝒙𝟏,𝟏 𝒙𝟎,𝟐 𝒙𝟏,𝟑 𝒙𝟎,𝟒 𝒙𝟏,𝟓 𝒙𝟏,𝟔

can
calculate

Problem

Signature is much longer than the message!

(and can be used only once)

How to sign long messages?

Use hash functions

hash 𝑯

SignLamport

a long message 𝒎

𝐒𝐢𝐠𝐧𝐋𝐚𝐦𝐩𝐨𝐫𝐭(𝒔𝒌,𝒎)

denote it:
𝐒𝐢𝐠𝐧𝐇𝐋

Idea: to sign multiple messages
use “certification”

𝒎𝟏

𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌𝟏,𝒎
𝟏 || 𝒑𝒌𝟐)

𝒑𝒌𝟐

𝒎𝟐

𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌𝟐,𝒎
𝟐 || 𝒑𝒌𝟑)

𝒑𝒌𝟑

generate a new pair
(𝒔𝒌𝟐, 𝒑𝒌𝟐)

generate a new pair
(𝒔𝒌𝟑, 𝒑𝒌𝟑)

𝒎𝟑

𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌𝟑,𝒎
𝟑 || 𝒑𝒌𝟒)

𝒑𝒌𝟒

generate a new pair
(𝒔𝒌𝟒, 𝒑𝒌𝟒)

. . .

How to verify?

The signer needs to include the “certificate chain” in
the signature.

𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌𝟏,𝒎
𝟏 || 𝒑𝒌𝟐)

𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌𝟏,𝒎
𝟏 || 𝒑𝒌𝟐)

𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌𝟐,𝒎
𝟐 || 𝒑𝒌𝟑)

𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌𝟏,𝒎
𝟏 || 𝒑𝒌𝟐)

𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌𝟐,𝒎
𝟐 || 𝒑𝒌𝟑)

𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌𝟑,𝒎
𝟑 || 𝒑𝒌𝟒)

𝐒𝐢𝐠𝐧(𝒔𝒌𝟏,𝒎
𝟏) = verify using 𝒑𝒌𝟏

verify using 𝒑𝒌𝟏

verify using 𝒑𝒌𝟐

verify using 𝒑𝒌𝟏

verify using 𝒑𝒌𝟐

verify using 𝒑𝒌𝟑

𝒎𝟏

𝒎𝟏

𝒎𝟐

𝐒𝐢𝐠𝐧(𝒔𝒌𝟏,𝒎
𝟐) =

𝐒𝐢𝐠𝐧(𝒔𝒌𝟏,𝒎
𝟑) =

Problems

1. The length of the signature grows linearly

2. The signing algorithm needs to have a state
(“memory”)

Solution to the first problem

𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌, 𝒑𝒌 𝑳 || 𝒑𝒌𝑹)

𝒑𝒌𝑳 𝒑𝒌𝑹

Instead of a chain use a binary tree:

“certify each time two public keys”

The tree:

(𝒔𝒌
,
𝒑𝒌)

(𝒔𝒌𝟎,
𝒑𝒌𝟎) (𝒔𝒌𝟏,

𝒑𝒌𝟏)

(𝒔𝒌𝟎𝟎,
𝒑𝒌𝟎𝟎) (𝒔𝒌𝟎𝟏,

𝒑𝒌𝟎𝟏) (𝒔𝒌𝟏𝟎,
𝒑𝒌𝟏𝟎) (𝒔𝒌𝟏𝟏,

𝒑𝒌𝟏𝟏)

(𝒔𝒌𝟎𝟏𝟎,
𝒑𝒌𝟎𝟏𝟎) (𝒔𝒌𝟎𝟏𝟏,

𝒑𝒌𝟎𝟏𝟏)

The details

𝒎𝟐

𝒎𝟏

𝒎𝒕

. . .

𝒎 = (𝒎𝟏, … ,𝒎𝒕)

start at root
if 𝒎𝒊 = 𝟎 go LEFT
if 𝒎𝒊 = 𝟏 go RIGHT

use the key in the LEAF to sign 𝒎

now the “chain” has length
|𝒎| = 𝒕

The key pairs are generated on-fly

(𝒔𝒌, 𝒑𝒌)

(𝒔𝒌𝟏,
𝒑𝒌𝟏)

(𝒔𝒌𝟎𝟎,
𝒑𝒌𝟎𝟎) (𝒔𝒌𝟎𝟏,

𝒑𝒌𝟎𝟏)

(𝒔𝒌𝟎𝟏𝟎,
𝒑𝒌𝟎𝟏𝟎) (𝒔𝒌𝟎𝟏𝟏,

𝒑𝒌𝟎𝟏𝟏) (𝒔𝒌𝟎𝟏𝟎,
𝒑𝒌𝟎𝟏𝟎) (𝒔𝒌𝟎𝟏𝟏,

𝒑𝒌𝟎𝟏𝟏)

(𝒔𝒌𝟎,
𝒑𝒌𝟎)

𝟎

𝟏

𝟏

“old” public keys have to
remembered and reused

𝟏

𝟎

𝟎 𝟎

𝐒𝐢𝐠𝐧(𝒔𝒌, (𝟎, 𝟏, 𝟎)) =

𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌, 𝒑𝒌𝟎||𝒑𝒌𝟏) 𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌𝟎, 𝒑𝒌𝟎𝟎||𝒑𝒌𝟎𝟏) 𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌𝟎𝟏, 𝒑𝒌𝟎𝟏𝟎||𝒑𝒌𝟎𝟏𝟏) 𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌𝟎𝟏𝟎, (𝟎, 𝟏, 𝟎))

𝐒𝐢𝐠𝐧(𝒔𝒌, (𝟎, 𝟎, 𝟎)) =

𝟏

𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌, 𝒑𝒌𝟎||𝒑𝒌𝟏) 𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌𝟎, 𝒑𝒌𝟎𝟎||𝒑𝒌𝟎𝟏) 𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌𝟎𝟎, 𝒑𝒌𝟎𝟎𝟎||𝒑𝒌𝟎𝟎𝟏) 𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌𝟎𝟎𝟎, (𝟎, 𝟎, 𝟎))

Why we have to remember the old keys?

(𝒔𝒌𝒘, 𝒑𝒌𝒘)

(𝒔𝒌𝒘𝟎, 𝒑𝒌𝒘𝟎) (𝒔𝒌𝒘𝟏, 𝒑𝒌𝒘𝟏)

𝟏𝟎

(𝒔𝒌𝒘, 𝒑𝒌𝒘)

(𝒔𝒌𝒘𝟎, 𝒑𝒌𝒘𝟎) (𝒔𝒌𝒘𝟏
′ , 𝒑𝒌𝒘𝟏

′)

𝟏𝟎

𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌𝒘, 𝒑𝒌𝒘𝟎||𝒑𝒌𝒘𝟏) 𝐒𝐢𝐠𝐧𝐇𝐋(𝒔𝒌𝒘, 𝒑𝒌𝒘𝟎||𝒑𝒌𝒘𝟏
′)

Suppose we don’t:

so we signed two different messages with the same key!

Problem

The tree is constructed on-fly, so we need to
remember the state.

A stupid solution:

generate the whole tree beforehand.

A better solution:

generate the whole tree pseudorandomly and just
remember the seed.

Remember the pseudorandom
functions (PRFs)?

𝑭𝒌: {𝟎, 𝟏}
𝒎 → {𝟎, 𝟏}𝒎

𝒙

𝑭𝒌(𝒙)

For a random key 𝒌 and any 𝒙𝟏, … , 𝒙𝒕 the values
𝑭𝒌(𝒙𝟏), … , 𝑭𝒌(𝒙𝒕)
“look random”

Solution

𝒔𝒌𝒘 ∶= 𝑭𝒌(𝒘)

node 𝒘

Take some PRF 𝑭

private key: (𝒔𝒌, 𝒌)
𝒔𝒌 – a private key for
hashed Lamport
𝒌 – a key for PRF 𝑭

public key:
𝒑𝒌 – a public key for
hashed Lamport

We have shown that

signature schemes
exist

one way functions
exist

hash functions
exist

pseudorandom
functions

exist
and and

But we know that

one way functions
exist

hash functions
exist

pseudorandom
functions

exist

Therefore we have shown that

signature schemes
exist

hash functions
exist

The proof that

signature schemes
exist

one-way functions
exist

is more complicated

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or
all of this material is currently granted without fee provided that copies are made
only for personal or classroom use, are not distributed for profit or commercial
advantage, and that new copies bear this notice and the full citation.

