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The situation

public-key encryption 
exists

RSA assumption
holds

factoring RSA moduli
is hard

question:

can we construct 
PKE based on the 

“factoring 
assumption”

Yes:
Rabin encryption



Rabin encrypion

• introduced by 
Michael O. Rabin in 1979

• based on squaring in 𝒁𝑵
∗

• security equivalent to factoring 

Michael O. Rabin (Wrocław 1931 – ) 

One of the founding fathers of 
computer science.
• introduced non-determinism
• decidability of the monadic second 

order logic
• efficient primality testing
• oblivious transfer,
• ....

received Turing Award in 1976



On previous lectures we proven the 
following

Fact

Let 𝑵 be a random RSA modulus.

The problem of computing square roots (modulo 𝑵) of 
random elements in 𝐐𝐑𝑵 is poly-time equivalent to the 
problem of factoring 𝑵.

one can 
factor 𝑵 in 
poly-time 

one can 
compute 

square roots 
modulo 𝑵

(1)

(2)



In other words

“squaring in 𝒁𝑵
∗ ” is a one-way function (assuming 

the factoring RSA moduli is hard).

Define:
𝐑𝐚𝐛𝐢𝐧: 𝒁𝑵

∗ → 𝒁𝑵
∗

as
𝐑𝐚𝐛𝐢𝐧 𝒙 ≔ 𝒙𝟐 𝐦𝐨𝐝 𝑵



A fact about squaring modulo 𝑵 = 𝒑𝒒?

𝒁𝑵
∗ 𝒁𝑵

∗

𝐑𝐚𝐛𝐢𝐧𝑵(𝒙) = 𝒙𝟐𝐦𝐨𝐝 𝑵

This function “glues” 𝟒 elements together. 



Example for 𝑵 = 𝟏𝟓

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 4 3 1 5 6 4 4 9 10 1 12 4 1

𝒁𝟏𝟓
∗

𝐐𝐑𝟏𝟓: 1 4

𝒙

𝒙𝟐



How to base encryption on this?

Idea:
public key: 𝑵 = 𝒑𝒒

private key: (𝒑, 𝒒)

encryption: 𝐄𝐧𝐜𝑵 𝒙 = 𝒙𝟐𝐦𝐨𝐝 𝑵

decryption: 𝐃𝐞𝐜 𝒑,𝒒 𝒚 = 𝒚𝐦𝐨𝐝 𝑵

Problem: there are 𝟒 square roots.

Solution: “make the inversion unique”.

can be computed 
efficiently if one knows 𝒑

and 𝒒 (see Lecture 7) 



How to do it?
An ad-hoc method: add an encoding (like in the “real RSA
encryption”).

In such a way that only 𝟏 out of the 𝟒 square roots “make 
sense”.

𝒁𝑵
∗ 𝒁𝑵

∗

𝒇(𝒙) = 𝒙𝟐𝐦𝐨𝐝 𝑵In other 
words:

make the 
set of legal
messages
is “sparse” 



Another approach

Fact

Suppose 𝑵 = 𝒑𝒒 where 
𝒑 = 𝒒 = 𝟑 (𝐦𝐨𝐝 𝟒)

Then the function
𝐑𝐚𝐛𝐢𝐧𝑵(𝒙) = 𝒙𝟐𝐦𝐨𝐝 𝑵

is a permutation when restricted to 𝐐𝐑𝑵
𝐑𝐚𝐛𝐢𝐧𝑵 ∶ 𝐐𝐑𝑵 𝐐𝐑𝑵

Such an 𝑵 is called a
“Blum integer”



How does it look?

𝒁𝑵
∗ 𝒁𝑵

∗

𝐑𝐚𝐛𝐢𝐧𝑵(𝒙) = 𝒙𝟐𝐦𝐨𝐝 𝑵

𝐐𝐑𝑵 𝐐𝐑𝑵



Rabin restricted to 𝐐𝐑𝑵 is a 
permutation

𝒁𝑵
∗ 𝒁𝑵

∗

𝐑𝐚𝐛𝐢𝐧𝑵(𝒙) = 𝒙𝟐𝐦𝐨𝐝 𝑵

𝐐𝐑𝑵 𝐐𝐑𝑵



Proof that 𝐑𝐚𝐛𝐢𝐧𝑵(𝒙) = 𝒙𝟐𝐦𝐨𝐝 𝑵
restricted to 𝐐𝐑𝑵 is a permutation

(𝑵 = 𝒑𝒒, where 𝒑 = 𝒒 = 𝟑𝐦𝐨𝐝 𝟒)

We prove that Rabin is injective, i.e. for every 𝒙, 𝒚  QRN
we have that 

𝒙𝟐 = 𝒚𝟐 ⟹ 𝒙 = 𝒚

Observation: by CRT it is enough to show that 

• 𝒙𝟐 = 𝒚𝟐 ⟹ 𝒙 = 𝒚𝐦𝐨𝐝 𝒑 and

• 𝒙𝟐 = 𝒚𝟐 ⟹ 𝒙 = 𝒚𝐦𝐨𝐝 𝒒.

By symmetry it’s also enough to show it just for 𝒑.



Proof
Suppose we have 𝒙, 𝒚  QRN such that

𝒙𝟐 = 𝒚𝟐 mod N

𝒙𝟐 = 𝒚𝟐𝐦𝐨𝐝 𝒑

𝒈𝟒𝒊 = 𝒈𝟒𝒋𝐦𝐨𝐝 𝒑

𝒈𝟒(𝒊−𝒋) = 𝟏𝐦𝐨𝐝 𝒑

𝒑 − 𝟏 | 𝟒(𝒊 − 𝒋)

𝟒𝒌 + 𝟐 | 𝟒(𝒊 − 𝒋)

𝟐𝒌 + 𝟏 | 𝟐(𝒊 − 𝒋)

𝟐𝒌 + 𝟏 | 𝒊 − 𝒋

𝒊 = 𝒋

𝒙 = 𝒚𝐦𝐨𝐝 𝒑

Let 𝒊, 𝒋 ∈ 𝐍 be such that 

• 𝒙 = 𝒈𝟐𝒊 𝐦𝐨𝐝 𝒑 and
• 𝒚 = 𝒈𝟐𝒋 𝐦𝐨𝐝 𝒑

where 𝒈 is a generator of 𝒁𝒑
∗

and

𝟎 ≤ 𝒋 ≤ 𝒊 <
𝒑 − 𝟏

𝟐

=
𝟒𝒌 + 𝟐

𝟐

= 𝟐𝒌 + 𝟏 QED

Let 𝒑 = 𝟒𝒌 +3, where 𝒌 ∈ 𝐍



How to encrypt a one-bit message 𝒃?

𝑵 – public key

(𝒑, 𝒒) – private key

𝐄𝐧𝐜𝑵(𝒃) = (𝐋𝐒𝐁 𝒙 ⊕ 𝒃,𝐑𝐚𝐛𝐢𝐧𝑵(𝒙)),

where 𝒙 ∈ 𝐐𝐑𝑵 is random.

𝐃𝐞𝐜𝒑,𝒒 𝒃′, 𝒚 = 𝐋𝐒𝐁 𝐑𝐚𝐛𝐢𝐧𝑵
−𝟏 𝒚 ⊕ 𝒃′

a Blum integer

Fact: the least significant bit is a hard-core bit for the 
Rabin permutation.

this can be computed if one knows 𝒑 and 𝒒

𝐑𝐚𝐛𝐢𝐧𝑵 (𝒙) = 𝒙𝟐𝐦𝐨𝐝 𝑵

𝐑𝐚𝐛𝐢𝐧𝑵 ∶ 𝐐𝐑𝑵 𝐐𝐑𝑵



Moral

public-key encryption 
exists

factoring RSA moduli
is hard
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1
2

3

4

5
6

7

8

9

10

Remember the exponentiation 
modulo a prime?

𝒙 𝟐𝒙𝐦𝐨𝐝 𝟏𝟏

0 1

1 2

2 4

3 8

4 5

5 10

6 9

7 7

8 3

9 6

𝟐 is a generator of 𝒁𝟏𝟏
∗



Discrete log
Function

𝒇(𝒙) = 𝒈𝒙𝐦𝐨𝐝 𝒑x gx

0 1

1 2

2 4

3 8

4 5

5 10

6 9

7 7

8 3

9 6

easy to compute

believed to be hard to 
compute for large 𝒑

𝒇−𝟏 is also denoted 𝐥𝐨𝐠𝒈
and called the discrete 

logarithm
Discrete log is hard in 
many other groups!



How to construct PKE based on the 
hardness of discrete log?

RSA was a trapdoor permutation, so the construction 
was quite easy...

In case of the discrete log, we just have a one-way 
function.

Diffie and Hellman constructed something weaker than 
PKE: a key exchange protocol (also called key 
agreement protocol).

We’ll not describe it.  Then, we’ll show how to “convert 
it” into a PKE.
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listens

Key exchange

Alice Bob

initially they share no secret

key 𝒌 key 𝒌

Eve should have no information about 𝒌

We will formalize it later.
Let’s first show the protocol.



The Diffie-Hellman Key exchange
• 𝑮 – a group, where discrete log is believed to be hard

• 𝒒 ∶= |𝑮|

• 𝒈 – a generator of 𝑮

Alice Bob

𝒙 ← 𝒁𝒒
𝒉𝟏 = 𝒈𝒙

𝒚 ← 𝒁𝒒
𝒉𝟐 = 𝒈𝒚

output:
𝒌𝑨 = (𝒉𝟐)

𝒙
output:

𝒌𝑩 = (𝒉𝟏)
𝒚

equal to:
𝒈𝒚𝒙

equal to:
𝒈𝒙𝒚

equal!



Security of the Diffie-Hellman key exchange

Eve

𝒉𝟏 = 𝒈𝒙 𝒉𝟐 = 𝒈𝒚𝑮,𝒈

knows

Eve should have no information about 𝒈𝒚𝒙.

𝒈𝒚𝒙 ?



If the discrete log in 𝑮 is hard, then...

it may also not be secure

Is it secure?

If the discrete log in 𝑮 is easy then the DH key 
exchange is not secure.

(because the adversary can compute 𝒙 and 𝒚 from 
𝒈𝒙 and 𝒈𝒚)



Example for 𝑮 = 𝒁𝒑
∗

We use the facts that:

• quadratic residues in 𝒁𝒑
∗ are even powers of 

the generator, and

• testing membership in 𝐐𝐑𝒑 is computationally 
easy (even for large 𝒑).



Suppose 𝑮 = 𝒁𝒑
∗

Alice Bob

𝒙 ← 𝒁𝒑−𝟏
𝒉𝟏 = 𝒈𝒙

𝒚 ← 𝒁𝒑−𝟏
𝒉𝟐 = 𝒈𝒚

𝒙 is even iff 𝒉𝟏 ∈ 𝐐𝐑𝒑

𝒚 is even iff 𝒉𝟐 ∈ 𝐐𝐑𝒑

Therefore:
𝒈𝒙𝒚 ∈ 𝐐𝐑𝒑 iff (𝒉𝟏 ∈ 𝐐𝐑𝒑 or 𝒉𝟐 ∈ 𝐐𝐑𝒑)

So, Eve can compute some information 
about 𝒈𝒙𝒚 (namely: if it is a QR, or not).

𝒈𝒙𝒚 ?

= 𝒈𝒙𝒚 𝐦𝐨𝐝 𝒑−𝟏



29

Solution (see previous lectures)

Instead of working in 𝒁𝒑
∗ work in its subgroup: 𝐐𝐑𝒑

How to find a generator of 𝐐𝐑𝒑?

A practical method: Choose 𝒑 that is a strong prime, 
which means that:

𝒑 = 𝟐 ⋅ 𝒒 + 𝟏, with 𝒒 prime.

Hence: 𝐐𝐑𝒑 has a prime order (𝒒).

Every element (except of 𝟏) of a group of a prime order is 
its generator!

Therefore: every element of 𝐐𝐑𝒑 is a generator.



The DH Key exchange over QR group
Take a prime 𝒑 = 𝟐 ⋅ 𝒒 + 𝟏, with 𝒒 prime.

Take any 𝒉 ∈ 𝒁𝒑 such that 𝒉 ≠ ±𝟏 and let 𝒈 = 𝒉𝟐𝐦𝐨𝐝 𝒑 .

Alice Bob

𝒙 ← 𝒁𝒒
𝒉𝟏 = 𝒈𝒙

𝒚 ← 𝒁𝒒
𝒉𝟐 = 𝒈𝒚

output:
𝒌𝑨 = (𝒉𝟐)

𝒙
output:

𝒌𝑩 = (𝒉𝟏)
𝒚



But is the partial information 
leakage really a problem?

We need to

1. formalize what we mean by secure key 
exchange,

2. identify the assumptions needed to prove the 
security.



Alice Bob

key 𝒌 ∈ 𝑲 key 𝒌 ∈ 𝑲

“transcript” 𝑻: the sequence of 
exchanged messages:

interactive
probabilistic

Turing machine 𝑨

interactive
probabilistic

Turing machine 𝑩

Informal definition:
(𝑨, 𝑩) is secure if no “efficient adversary” can distinguish
𝒌 from random, given 𝑻, with a “non-negligible advantage”.

key 𝒌

𝑻

random element of 𝑲

?

some finite set



How to formalize it?

𝑨 𝑩

key 𝒌 ∈ 𝑲

security parameter 𝟏𝒏

key 𝒌 ∈ 𝑲

We say (𝑨, 𝑩) is secure a secure key-exchange protocol if:
the output of 𝑨 and 𝑩 is always the same, and

∀
poly-time 

𝑴

𝑷 𝑴 𝟏𝒏, 𝑻, 𝒌 = 𝟏 − 𝑷 𝑴 𝟏𝒏, 𝑻, 𝒓 = 𝟏 ≤ 𝐧𝐞𝐠𝐥(𝒏)

𝒓 ← 𝑲

𝑻

may depend on 𝟏𝒏



How to make 𝑮 dependent on 𝟏𝒏?

In practice often a fixed group is used.

In theory we need to have a new group 𝑮 for every 
value of 𝟏𝒏.

So, we need to define an algorithm that generates 𝑮
and its generator 𝒈.



Group generating algorithm 𝐆𝐞𝐧𝐆

GenG𝟏𝒏

(𝑮, 𝒒, 𝒈)
description of a group 𝑮,
order 𝒒 of 𝑮, and
a generator 𝒈 of 𝑮.

poly-time randomized 
algorithm 



Example of 𝐆𝐞𝐧𝐆

𝐆𝐞𝐧𝐆𝐐𝐑𝟏𝒏

(𝒁𝒑, 𝒒, 𝒈)
where: 

• 𝒑, 𝒒 – random primes such that 
𝒑 = 𝒏 and 𝒑 = 𝟐 ⋅ 𝒒 + 𝟏

• and 𝒈 = 𝒉𝟐𝐦𝐨𝐝 𝒑, where
𝒉 ← 𝒁𝒑 ∖ −𝟏, 𝟏



How does the protocol look now?

Alice Bob

𝒙 ← 𝒁𝒒

𝒚 ← 𝒁𝒒
𝒉𝟐 = 𝒈𝒚

security parameter 𝟏𝒏

𝑮,𝒈, 𝒒, 𝒉𝟏 = 𝒈𝒙

(𝑮, 𝒈, 𝒒) ← 𝐆𝐞𝐧𝐆(𝟏𝒏)

output:
𝒌𝑨 = (𝒉𝟐)

𝒙
output:

𝒌𝑩 = (𝒉𝟏)
𝒚

If such a key exchange protocol is secure, we say that: the 
Decisional Diffie-Hellman (DDH) problem is hard with 

respect to GenG)



Formally

Decisional Diffie-Hellman (DDH) problem is hard relative to 
GenG if for every poly-time algorithm 𝑨 we have that

𝑷 𝑨 𝑮, 𝒒, 𝒈, 𝒈𝒙, 𝒈𝒚, 𝒈𝒛 = 𝟏 − 𝑷 𝑨(𝑮, 𝒒, 𝒈, 𝒈𝒙, 𝒈𝒚, 𝒈𝒙𝒚 = 𝟏 |

≤ 𝐧𝐞𝐠𝐥(𝒏)

where 

𝑮, 𝒒, 𝒈 ← 𝐆𝐞𝐧𝐆 𝟏𝒏

and

𝒙, 𝒚, 𝒛 ← 𝒁𝒒



Examples

DDH is believed to be hard relative to 𝐆𝐞𝐧𝐆𝐐𝐑

Other examples: elliptic curves



How does DDH compare to the 
discrete log assumption

DDH is hard 
relative to 𝐆𝐞𝐧𝐆

discrete log is hard 
relative to 𝑯

implies

The opposite implication is unknown in most of the cases



She can launch a “man-in-the-middle attack”.

A problem

The protocols that we discussed are secure only 
against a passive adversary
(that only eavesdrop).

What if the adversary is active?



Man in the middle attack

Alice Bob

key 𝒌 key 𝒌′key 𝒌 key 𝒌′

I am Bob I am Alice

A very realistic attack!

So, is this thing totally useless?
No! (it is useful as a building block)
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ElGamal encryption

ElGamal is another popular public-key 
encryption scheme.

Introduced in:

[Taher ElGamal "A Public key 
Cryptosystem and A Signature 
Scheme based on discrete 
Logarithms". IEEE Transactions on 
Information Theory. 1985]

Taher ElGamal
(1955– )

It is based on the Diffie-Hellman key-exchange.



K = M = C = 𝑮
𝐄𝐧𝐜(𝒌,𝒎) = 𝒎 · 𝒌
𝐃𝐞𝐜(𝒌,𝒎) = 𝒎 · 𝒌−𝟏

First observation
Remember that the one-time pad scheme can be generalized 
to any group 𝑮?

So, if 𝒌 is the key agreed in the DH key exchange, then Alice 
can send a message 𝑴 ∈ 𝑮 to Bob “encrypting it with 𝒌”  by 
setting: 𝒄 ∶= 𝒎 · 𝒌

Alice Bob
𝒄 ∶= 𝒎 · 𝒌

Note: this is essentially the KEM/DEM method from Lecture 8.



How does it look now?

Alice Bob

𝒙 ← 𝒁𝒒 𝒚 ← 𝒁𝒒

𝒉𝟐 = 𝒈𝒚

(𝑮, 𝒈, 𝒒, 𝒉𝟏)

(𝑮, 𝒈, 𝒒) ← 𝐆𝐞𝐧𝐆(𝟏𝒏)

output:
𝒎’ ∶= 𝒄 · 𝒉𝟐

−𝒙

security parameter 𝟏𝒏

plaintext
𝒎

𝒄 ∶= 𝒎 · (𝒉𝟏)
𝒚

since (𝒉𝟐)
𝒙 = (𝒉𝟏)

𝒚

we get: 𝒎 = 𝒎’

𝒉𝟏 = 𝒈𝒙



The last two messages can be sent together

Alice Bob

𝒙 ← 𝒁𝒒 𝒚 ← 𝒁𝒒

(𝒉𝟐, 𝒄) ≔
𝒈𝒚,𝒎 · 𝒉𝟏

𝒚

(𝑮, 𝒈, 𝒒, 𝒉𝟏)

(𝑮, 𝒈, 𝒒) ← 𝐆𝐞𝐧𝐆(𝟏𝒏)

output:
𝒎’ ∶= 𝒄 · 𝒉𝟐

−𝒙

security parameter 𝟏𝒏

plaintext
𝒎

𝒉𝟏 = 𝒈𝒙



private key

public key

ciphertext

key generation

decryption

encryption

ElGamal encryption

Alice Bob

𝒙 ← 𝒁𝒒 𝒚 ← 𝒁𝒒

(𝒉𝟐, 𝒄) ≔
𝒈𝒚,𝒎 · 𝒉𝟏

𝒚

(𝑮, 𝒈, 𝒒, 𝒉𝟏)

(𝑮, 𝒈, 𝒒) ← 𝐆𝐞𝐧𝐆(𝟏𝒏)

output:
𝒎’ ∶= 𝒄 · 𝒉𝟐

−𝒙

security parameter 𝟏𝒏

plaintext
𝒎

𝒉𝟏 = 𝒈𝒙



ElGamal encryption

𝐆𝐞𝐧(𝟏𝒏) first runs GenG to obtain 𝑮,𝒈 and 𝒒.  Then, it chooses 
𝒙 ← 𝒁𝒒 and computes 𝒉𝟏 ∶= 𝒈𝒙.     

Let 𝐆𝐞𝐧𝐆 be such that DDH is hard with respect to 𝐆𝐞𝐧𝐆.

𝐄𝐧𝐜((𝑮, 𝒈, 𝒒, 𝒉𝟏),𝒎) ∶= (𝒎 ⋅ 𝒉𝟏
𝒚
, 𝒈𝒚) , 

where 𝒎 ∈ 𝑮 and 𝒚 is a random element of 𝑮
(note: it is randomized by definition)

𝐃𝐞𝐜 𝑮, 𝒈, 𝒒, 𝒙 , 𝒄𝟏, 𝒉𝟐 : = 𝒄𝟏 · 𝒉𝟐
−𝒙

The public key is (𝑮, 𝒈, 𝒒, 𝒉𝟏).
The private key is (𝑮, 𝒈, 𝒒, 𝒙).



Correctness

𝐃𝐞𝐜 𝑮, 𝒈, 𝒒, 𝒙 , 𝒄𝟏, 𝒉𝟐 = 𝒄𝟏 · 𝒉𝟐
−𝒙

𝐄𝐧𝐜((𝑮, 𝒈, 𝒒, 𝒉),𝒎) = (𝒎 · 𝒉𝒚, 𝒈𝒚)

= 𝒎 · 𝒉𝒚 · 𝒈𝒚 −𝒙

= 𝒎 · (𝒈𝒙)𝒚 ⋅ 𝒈𝒚 −𝒙

= 𝒎 · 𝒈𝒙𝒚 · 𝒈−𝒚𝒙

= 𝒎

𝒉 = 𝒈𝒙



How to map an integer 𝒊 ∈ {𝟏, … , 𝒒} to 𝐐𝐑𝒑?

Just square: 
𝒇(𝒊) = 𝒊𝟐𝐦𝐨𝐝 𝒑.

Why is it one-to-one?

ElGamal – implementation issues

Which group to choose?

E.g.: 𝐐𝐑𝒑, where 𝒑 is a strong prime, i.e.: 𝒒 =
𝒑−𝟏

𝟐
is also prime.

Plaintext space is a set of integers {𝟏,… , 𝒒}.
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Remember this picture (from previous lectures)?

1

2

3

8

9

10

1

𝒁𝟏𝟏
∗ :

QR11:

9 4

𝒇(𝒙) = 𝒙𝟐

4

7

5

6
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Is it also efficiently invertible?

Yes (this was discussed on Lecture 7)

The mapping

So
𝒇(𝒊) = 𝒊𝟐𝐦𝐨𝐝 𝒑

is one-to-one (on {𝟏, … , 𝒒}).



Plan

1. Rabin encryption

2. ElGamal encryption

3. Homomorphic encryption and Paillier 
cryptosystem

4. Practical considerations

5. Theoretical overview



ElGamal has an interesting property

homomorphism with respect to multiplication:
A “product of two ciphertexts” decrypts to  a product of 
their corresponding messages.

𝐄𝐧𝐜𝒑𝒌 𝒎 = 𝒄, 𝒉 ,

𝐄𝐧𝐜𝒑𝒌 𝒎′ = 𝒄′, 𝒉′
𝒄 ⋅ 𝒄′, 𝒉 ⋅ 𝒉′

𝒎 ⋅𝒎′𝒎,𝒎′

multiply

multiply

d
ecry

p
t

d
ecry

p
t



Why?

• public key: (𝑮, 𝒈, 𝒒, 𝒉)

• private key: 𝑮,𝒈, 𝒒, 𝒙

𝒄 ≔ 𝐄𝐧𝐜((𝑮, 𝒈, 𝒒, 𝒉),𝒎) ∶= (𝒎 ⋅ 𝒉𝒚, 𝒈𝒚), where 𝒚 ← 𝑮

𝒄′ ≔ 𝐄𝐧𝐜((𝑮, 𝒈, 𝒒, 𝒉),𝒎′) ∶= (𝒎′ ⋅ 𝒉𝒚′, 𝒈𝒚′),  where 𝒚′ ← 𝑮

product of 𝒄 and 𝒄′:
(𝒎 ⋅ 𝒎′ ⋅ 𝒉𝒚 ⋅ 𝒉𝒚

′
, 𝒈𝒚 ⋅ 𝒈𝒚′)

= 𝒎 ⋅ 𝒎′ ⋅ 𝒉𝒚+𝒚
′
, 𝒈𝒚+𝒚

′

this is an encryption of 𝒎 ⋅
𝒎′ with randomness 𝒚 + 𝒚′



Homomorphism – good or bad?

Sometimes homomorphism is a security weakness 
(think of the CCA security).

On the other hand: it can also be a plus.

One example: cloud computing



Example: outsourcing computation

has a large set 
𝒙𝟏, … , 𝒙𝒏 ⊆ 𝒁𝒑

∗

and wants to learn 
𝒙 = 𝒙𝟏 ⋅ ⋯ ⋅ 𝒙𝒏 𝐦𝐨𝐝 𝒑

𝒑,
𝒄𝟏, … , 𝒄𝒏

for 𝒊 = 𝟏 to 𝒏: 
𝒄𝒊 ≔ 𝐄𝐧𝐜𝒑𝒌(𝒙𝒊)

generated a key pair 

𝒑𝒌 = 𝒁𝒑, 𝒈, 𝒑 − 𝟏, 𝒉

𝒔𝒌 = (𝒁𝒑, 𝒈, 𝒑 − 𝟏, 𝒙)

𝒄

computes
𝒄 ≔ 𝒄𝟏 ⋅ ⋯ ⋅ 𝒄𝒏 𝐦𝐨𝐝 𝒑

computes the 
result as:
𝒙 ≔ 𝐃𝐞𝐜𝒔𝒌 𝒄

Observe: the server doesn’t learn the 𝒙𝒊‘s!



This can be generalized!
The example on the previous slide was a bit artificial. 
But think about the following.

has some data 𝒙𝟏, … , 𝒙𝒏and wants to learn 
𝒙 = 𝒇(𝒙𝟏, … , 𝒙𝒏) for some function 𝒇.

𝒑𝒌,
𝒄𝟏, … , 𝒄𝒏

for 𝒊 = 𝟏 to 𝒏: 
𝒄𝒊 ≔ 𝐄𝐧𝐜𝒑𝒌(𝒙𝒊)

𝒄

computes 𝒄 from 
𝒄𝟏, … , 𝒄𝒏

computes the 
result as:
𝒙 ≔ 𝐃𝐞𝐜𝒔𝒌 𝒄

but how to do 
it for any 𝒇?



Fully homomorphic encryption (FHE) 

Constructing encryption scheme that would allow 
“homomorphic computation” of any function 𝒇
was an open problem until 2009.

The first such construction was given in:
Craig Gentry. Fully Homomorphic Encryption Using 
Ideal Lattices. ACM Symposium on Theory of 
Computing (STOC), 2009.

Working towards construction of practical FHE is 
an active research area.



A natural (but much simpler) question

Can we construct an encryption scheme that is 
homomorphic with respect to addition?

Answer: Yes, Paillier cryptosystem

[Pascal Paillier "Public-Key Cryptosystems Based 
on Composite Degree Residuosity Classes". 
EUROCRYPT 1999]



Paillier cryptosystem works over 𝒁
𝑵𝟐
∗ , 

where 𝑵 is an RSA modulus

Let 𝑵 ≔ 𝒑𝒒.
public key: 𝑵
private key: (𝒑, 𝒒)

How does 𝒁
𝑵𝟐
∗ look like?

Observe:
𝝋 𝑵𝟐 = 𝒑 𝒑 − 𝟏 ⋅ 𝒒 𝒒 − 𝟏

= 𝒑𝒒 ⋅ 𝒑 − 𝟏 (𝒒 − 𝟏)
= 𝑵 ⋅ 𝝋(𝑵)



Fact

𝒁
𝑵𝟐
∗ is isomorphic to 𝒁𝑵 × 𝒁𝑵

∗ with the following 
isomorphism

𝒇: 𝒁𝑵 × 𝒁𝑵
∗ → 𝒁

𝑵𝟐
∗

𝒇 𝒂, 𝒃 = 𝟏 + 𝑵 𝒂 ⋅ 𝒃𝑵 𝐦𝐨𝐝 𝑵𝟐

[proof: exercise]If 𝒙 = 𝒇 𝒂, 𝒃 then we will 
also write: 𝒙 ↔ 𝒂, 𝒃



Another fact

Fact: for any integer 𝒂 we have that
𝟏 + 𝑵 𝒂 = 𝟏 + 𝒂 ⋅ 𝑵 𝐦𝐨𝐝 𝑵𝟐

Proof: 

𝟏 + 𝑵 𝒂 = 𝟏 +
𝒂

𝟏
𝑵𝟏 +

𝒂

𝟐
𝑵𝟐 +⋯+

𝒂

𝟏
𝑵𝒂

= 𝟏 +
𝒂

𝟏
𝑵 𝐦𝐨𝐝 𝑵𝟐

= 𝟏 + 𝒂 ⋅ 𝑵 𝐦𝐨𝐝 𝑵𝟐

QED



A consequence of this fact

Consequence: order of 𝟏 + 𝑵 in 𝒁
𝑵𝟐
∗ is 𝑵.

why?
because:

• for 𝟎 < 𝒂 < 𝑵 we have 𝟏 < 𝟏 + 𝒂 ⋅ 𝑵 < 𝑵𝟐

• and 𝟏 + 𝑵 ⋅ 𝑵 = 𝟏 (𝐦𝐨𝐝 𝑵𝟐)

Fact: for any integer 𝒂 we have that

𝟏 + 𝑵 𝒂 = 𝟏 + 𝒂 ⋅ 𝑵 𝐦𝐨𝐝 𝑵𝟐



Structure of 𝒁
𝑵𝟐
∗

𝒁
𝑵𝟐
∗ ≅

𝟏

𝟎

𝑵 − 𝟏

𝑵 − 𝟏

𝒁𝑵
∗

𝒁𝑵

...

. . .



Multiplication in 𝒁
𝑵𝟐
∗

𝒁𝑵
∗

𝒁𝑵

𝒙 𝒙′ 𝒙 + 𝒙′

𝒚

𝒚′

𝒚 ⋅ 𝒚′



𝑵th residues in 𝒁
𝑵𝟐
∗

A number 𝒚 ∈ 𝒁
𝑵𝟐
∗ is called an 𝑵th residue modulo 𝑵𝟐

if there exists 𝒙 ∈ 𝒁
𝑵𝟐
∗ such that 

𝒚 = 𝒙𝑵𝐦𝐨𝐝 𝑵𝟐

How do the 𝑵th residues look like?



A form of every 𝑵th residue

Suppose 𝒙 ↔ (𝒂, 𝒃). 

Then
𝒙𝑵 ↔ (𝑵 ⋅ 𝒂 𝐦𝐨𝐝 𝑵, 𝒃𝑵 𝐦𝐨𝐝 𝑵)

= (𝟎, 𝒃𝑵𝐦𝐨𝐝 𝑵)

So every 𝑵th residue is of a form 

𝒚 ↔ (𝟎, 𝒄)

Is every element of this form an 𝑵th residue?

Yes!



A proof that every element (𝟎, 𝒄)
is an 𝑵th residue

Take 𝒚 ↔ (𝟎, 𝒄). Let 𝒅 = 𝑵−𝟏 𝐦𝐨𝐝 𝝋(𝑵).

For an arbitrary 𝒂 ∈ 𝒁𝑵 let 𝒙 be such that 
𝒙 ↔ 𝒂, 𝒄𝒅

We have:
𝒙𝑵 ↔ 𝑵𝒂𝐦𝐨𝐝 𝑵, 𝒄𝒅𝑵 𝐦𝐨𝐝 𝑵

= 𝟎, 𝒄𝒅𝑵𝐦𝐨𝐝 𝝋 𝑵

= (𝟎, 𝒄𝟏)
= (𝟎, 𝒄)

Observe: this also shows that every 𝑵th residue 𝒚 has 
exactly 𝑵 roots 𝑵 𝒚.

this is possible 
because 
𝑵 ⊥ 𝝋(𝑵)

[exercise]



The 𝑵th residues pictorially

𝒁
𝑵𝟐
∗

𝟏

𝟎

𝑵 − 𝟏

𝑵 − 𝟏

𝒁𝑵
∗

𝒁𝑵

...

. . .

𝑵th residues. Denote this set 𝐑𝐞𝐬 𝑵𝟐



Also
The 𝑵th roots of every (𝟎, 𝒄) have a form (𝒂, 𝒄𝒅):

𝒁
𝑵𝟐
∗

𝟏

𝟎

𝑵 − 𝟏

𝑵 − 𝟏

𝒁𝑵
∗

𝒁𝑵

...

. . .

all 𝑵th
roots of the 
same 𝑵th

residue



Corollary

It’s easy to choose a random 𝑵th residue:

Just take a random element 𝒙 ← 𝒁
𝑵𝟐
∗ and compute 

𝒚 = 𝒙𝑵 𝐦𝐨𝐝 𝑵𝟐.

Which problem is hard 𝒁
𝑵𝟐
∗ (if one doesn’t know 

𝒑 and 𝒒)?



Decisional composite 
residuosity (DCR) assumption 

Informally:

It is hard to distinguish random element of 𝐑𝐞𝐬 𝑵𝟐

from a random element of 𝒁
𝑵𝟐
∗ . 

𝒁
𝑵𝟐
∗

𝒁
𝑵𝟐
∗

?



How to encrypt?

Main idea: messages are elements 𝒙 ↔ 𝒂, 𝟏 (for 𝒂 ∈ 𝒁𝑵) 

𝒁
𝑵𝟐
∗

To encrypt a message 𝒎 multiply it by a random 𝒓 ← 𝐑𝐞𝐬(𝑵𝟐):

𝐄𝐧𝐜𝑵 𝒎 = 𝒎 ⋅ 𝒓



Pictorially

𝒁
𝑵𝟐
∗

message 𝒎

ciphertexts of 𝒎



Two questions

1. Is this secure?

2. How to decrypt?



Security follows from the DCR
assumption 

𝐄𝐧𝐜𝑵 𝒎 = 𝒎 ⋅ 𝒓 where 𝒓 ← 𝐑𝐞𝐬(𝑵𝟐)

Proof (sketch):
Take the original scheme 

and modify it as follows:

𝐄𝐧𝐜𝑵 𝒎 = 𝒎 ⋅ 𝒓 where 𝒓 ← 𝒁
𝑵𝟐
∗

Easy to see:
1. the modified scheme hides the message completely (it’s a 

“generalized one-time pad”)
2. if these two schemes can be distinguished then the DCR 

assumption is broken.



How to decrypt?

Let’s view encryption as a function in 𝒁𝑵 × 𝒁𝑵
∗ :

𝐄𝐧𝐜𝑵 𝒂, 𝟏 ↔ 𝒂 + 𝟎, 𝟏 ⋅ 𝒃 where 𝒃 ← 𝒁𝑵
∗

= 𝒂, 𝒃

𝐄𝐧𝐜𝑵 𝒎 = 𝒎 ⋅ 𝒓 where 
𝒓 ← 𝐑𝐞𝐬(𝑵𝟐)

Problem: 
the receiver can only see 𝒇(𝒂, 𝒃).
How can he “extract” 𝒂 from it?



Observation

𝒇 𝒂, 𝒃
𝝋(𝑵)

𝐦𝐨𝐝 𝑵𝟐 ↔ (𝝋 𝑵 ⋅ 𝒂𝐦𝐨𝐝 𝑵, 𝒃𝝋 𝑵 𝐦𝐨𝐝 𝑵)

= (𝝋 𝑵 ⋅ 𝒂𝐦𝐨𝐝 𝑵, 𝟏)

↔ 𝒇 𝝋 𝑵 ⋅ 𝒂𝐦𝐨𝐝 𝑵, 𝟏

= 𝟏 + 𝑵 𝝋 𝑵 ⋅𝒂 𝐦𝐨𝐝 𝑵 ⋅ 𝟏𝒏 𝐦𝐨𝐝 𝑵𝟐

= 𝟏 +𝑵 𝝋 𝑵 ⋅𝒂 𝐦𝐨𝐝 𝑵 𝐦𝐨𝐝 𝑵𝟐

= 𝟏 + (𝝋 𝑵 ⋅ 𝒂𝐦𝐨𝐝 𝑵) ⋅ 𝑵𝐦𝐨𝐝 𝑵𝟐

< 𝑵𝟐

= 𝟏 + (𝝋 𝑵 ⋅ 𝒂𝐦𝐨𝐝 𝑵) ⋅ 𝑵

So:

𝝋 𝑵 ⋅ 𝒂𝐦𝐨𝐝 𝑵 =
𝒇 𝒂, 𝒃

𝝋(𝑵)
𝐦𝐨𝐝𝑵𝟐 − 𝟏

𝑵

here we use the fact 
that  

𝟏 + 𝑵 𝒂

= 𝟏 + 𝒂 ⋅ 𝑵 𝐦𝐨𝐝 𝑵𝟐



Continued:

We got that

𝝋 𝑵 ⋅ 𝒂𝐦𝐨𝐝 𝑵 =
𝒇 𝒂, 𝒃

𝝋(𝑵)
𝐦𝐨𝐝 𝑵𝟐 − 𝟏

𝑵
Therefore

𝒂 = 𝒛 ⋅ 𝝋 𝑵
−𝟏

𝐦𝐨𝐝 𝑵

denote it 𝒛



Paillier encryption

Key generation: let 𝑵 ≔ 𝒑𝒒 like in RSA
public key: 𝑵
private key: (𝒑, 𝒒)

Encryption:
𝐄𝐧𝐜𝑵 𝒎 = 𝟏 +𝑵 𝒎 ⋅ 𝒓𝑵 𝐦𝐨𝐝 𝑵𝟐 where 𝒓 ← 𝒁𝑵

∗

Decryption:

𝐃𝐞𝐜𝒑,𝒒 𝒄 =
(𝒄𝝋 𝑵 𝐦𝐨𝐝 𝑵𝟐) −𝟏

𝑵
⋅ 𝝋 𝑵 −𝟏𝐦𝐨𝐝 𝑵



Why is this additively homomorphic?

𝒄 = 𝐄𝐧𝐜𝑵 𝒎 ↔ (𝒎, 𝒓) where 𝒓 ← 𝒁𝑵
∗

𝒄′ = 𝐄𝐧𝐜𝑵 𝒎′ ↔ 𝒎′, 𝒓′ where 𝒓′ ← 𝒁𝑵
∗

We have:

𝒄 ⋅ 𝒄′↔ 𝒎, 𝒓 ⋅ (𝒎, 𝒓)
= (𝒎 +𝒎′, 𝒓 ⋅ 𝒓′)

↔ 𝐄𝐧𝐜𝑵 𝒎+𝒎′ with randomness 𝒓 ⋅ 𝒓′



Plan

1. Rabin encryption

2. ElGamal encryption

3. Homomorphic encryption and Paillier 
cryptosystem

4. Practical considerations

5. Theoretical overview



ElGamal vs. RSA

In practice RSA and ElGamal (in 𝒁𝒑
∗ ) have similar 

security for equivalent key lengths.

• RSA is slightly more efficient

• ElGamal has a ciphertext twice as long as the 
plaintext

• But ElGamal can be generalized to other groups 
(e.g. the elliptic curves) where it is much more 
efficient!



NIST recommendations

bits of security
RSA modulus 

length

discrete log 
in order 

𝒒 subgroups of 
𝒁𝒑
∗

discrete log in
elliptic curves of 

order:

≤ 𝟖𝟎 1024
𝒑 = 𝟏𝟎𝟐𝟒
𝒒 = 𝟏𝟔𝟎

160

112 2048
𝒑 = 𝟐𝟎𝟒𝟖
𝒒 = 𝟐𝟐𝟒

224

128 3072
𝒑 = 𝟑𝟎𝟕𝟐
𝒒 = 𝟐𝟓𝟔

256

192 7680
𝒑 = 𝟕𝟔𝟖𝟎
𝒒 = 𝟑𝟖𝟒

384

256 15360
𝒑 = 𝟏𝟓𝟑𝟔𝟎
𝒒 = 𝟓𝟏𝟐

512

[NIST Special Publication 800-57 Part 1 Revision 4 Recommendation for Key 
Management]



Quantum attacks

All the schemes presented so far 
can be broken by quantum 
computers using Shor’s algorithm.

[Peter W. Shor "Polynomial-Time 
Algorithms for Prime Factorization 
and Discrete Logarithms on a 
Quantum Computer“ 1995] Peter Shor 

1959—

There exists public-key encryption schemes that are believed 
to be secure against quantum computers (see post-quantum 
cryptography)



Plan

1. Rabin encryption

2. ElGamal encryption

3. Homomorphic encryption and Paillier 
cryptosystem

4. Practical considerations

5. Theoretical overview



A natural question

Is public-key encryption a member of Minicrypt?

Answer: NO (as far as we know).

More precisely: nobody knows how to construct 
PKE from one-way functions.

However, the following implication is known:

public-key 
encryption exists

trap-door permutations 
exist

This is proven using the hardcore predicates.



Hard-core predicates

Hard-core predicates are a generalization of hard-
core bits. 

Definition (informal)

𝝅: {𝟎, 𝟏}𝒏 {𝟎, 𝟏} is a hard core predicate for a 
trap-door permutation 𝒇: 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}𝒏 if it is 
hard to guess 𝝅(𝒇−𝟏(𝒚)) from 𝒚
(with probability significantly better than 𝟏/𝟐).



A fact
Does every trap-door permutation have a hard-
core predicate?

Almost:

Suppose that 𝒇 is a trap-door permutation.

It can be used to build a trap-door permutation 𝒈
that has a hard-core predicate.



How to encrypt with such an 𝒈?

Encryption for messages of length 𝟏:

public key: description of 𝒈

private key: trapdoor 𝒕 for 𝒈

𝐄𝐧𝐜𝒈 𝒃 = (𝝅 𝒙 ⊕ 𝒃,𝒈 𝒙 )

where 𝒙 ∈ 𝒁𝑵
∗ is random.

𝐃𝐞𝐜𝒕 𝒃
′, 𝒚 = 𝝅 𝒈−𝟏 𝒚 ⊕ 𝒃



The general picture

public-key 
encryption exists

trap-door permutations 
exist

one way functions
existminicrypt

cryptomania
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