Lecture 9 Public-Key Encryption II

Stefan Dziembowski

www.crypto.edu.pl/Dziembowski

University of Warsaw

version 1.0

Plan

- 1. Rabin encryption
- 2. ElGamal encryption
- 3. Homomorphic encryption and Paillier cryptosystem
- 4. Practical considerations
- 5. Theoretical overview

Rabin encrypion

Michael O. Rabin (Wrocław 1931 -)

One of the founding fathers of computer science.

- introduced **non-determinism**
- decidability of the monadic second order logic
- efficient primality testing
- oblivious transfer,

...

received Turing Award in 1976

- introduced by
 Michael O. Rabin in 1979
- based on squaring in Z_N^*
- security equivalent to factoring

On previous lectures we proven the following

<u>Fact</u>

Let **N** be a random **RSA** modulus.

The problem of computing square roots (modulo N) of random elements in QR_N is poly-time equivalent to the problem of factoring N.

In other words

"squaring in $\mathbb{Z}_{\mathbb{N}}^*$ " is a one-way function (assuming the **factoring RSA moduli** is hard).

Define:

Rabin: $Z_N^* \to Z_N^*$

as

 $\operatorname{Rabin}(x) \coloneqq x^2 \bmod N$

A fact about squaring modulo N = pq?

This function "glues" **4** elements together.

Example for N = 15

How to base encryption on this?

Idea: public key: N = pqprivate key: (p,q)encryption: $Enc_N(x) = x^2 \mod N$ decryption: $Dec_{(p,q)}(y) = \sqrt{y} \mod N$

can be computed efficiently if one knows *p* and *q* (see Lecture 7)

Problem: there are **4** square roots.

Solution: "make the inversion unique".

How to do it?

An ad-hoc method: add an encoding (like in the "real **RSA** encryption").

In such a way that only **1** out of the **4** square roots "make sense".

Another approach

Such an *N* is called a "Blum integer"

Fact

Suppose N = pq where $p = q = 3 \pmod{4}$

Then the function $\operatorname{Rabin}_{N}(x) = x^2 \mod N$

is a permutation when restricted to QR_N $Rabin_N : QR_N \rightarrow QR_N$

How does it look?

Rabin restricted to QR_N is a permutation

Proof that $\operatorname{Rabin}_N(x) = x^2 \mod N$ restricted to QR_N is a permutation

(N = pq, where $p = q = 3 \mod 4$)

We prove that **Rabin** is injective, i.e. for every $x, y \in QR_N$ we have that

$$x^2 = y^2 \implies x = y$$

Observation: by **CRT** it is enough to show that

- $x^2 = y^2 \implies x = y \mod p$ and
- $x^2 = y^2 \implies x = y \mod q$.

By symmetry it's also enough to show it just for **p**.

Suppose we have $x, y \in \mathbf{QR}_{N}$ such that $x^2 = y^2 \mod N$ $x^2 = y^2 \mod p$ Let p = 4k + 3, where $k \in \mathbb{N}$ $g^{4i} = g^{4j} \mod p$ Let $i, j \in \mathbb{N}$ be such that $g^{4(i-j)} = 1 \mod p$ • $x = g^{2i} \mod p$ and p-1 | 4(i-j)• $y = g^{2j} \mod p$ $4k+2 \mid 4(i-i)$ where g is a generator of Z_n^* $2k+1 \mid 2(i-j)$ $0\leq j\leq i<\frac{p-1}{2}$ 2k + 1 | i - j $=\frac{4k+2}{2}$ i = j= 2k + 1 $x = y \mod p$ OED

Proof

and

How to encrypt a one-bit message **b**?

Fact: the least significant bit is a **hard-core bit for the Rabin permutation**.

a Blum integer

N – public key
(*p*, *q*) – private key

 $\begin{aligned} \operatorname{Rabin}_{N}(x) &= x^{2} \operatorname{mod} N \\ \operatorname{Rabin}_{N} : \operatorname{QR}_{N} \to \operatorname{QR}_{N} \end{aligned}$

Enc_N(b) = (LSB(x) \oplus b, Rabin_N(x)), where $x \in QR_N$ is random.

this can be computed if one knows **p** and **q**

 $\operatorname{Dec}_{p,q}(b',y) = \operatorname{LSB}\left(\operatorname{Rabin}_{N}^{-1}(y)\right) \oplus b'$

Moral

factoring RSA moduli is hard

public-key encryption exists

Plan

- 1. Rabin encryption
- 2. ElGamal encryption
 - 1. a tool: Diffie-Hellman key exchange
 - 2. ElGamal encryption
- 3. Homomorphic encryption and Paillier cryptosystem
- 4. Practical considerations
- 5. Theoretical overview

Remember the exponentiation modulo a prime?

x	2 ^x mod 11
0	1
1	2
2	4
3	8
4	5
5	10
6	9
7	7
8	3
9	6

2 is a generator of \mathbf{Z}_{11}^*

Discrete log

X	g ^x
0	1
1	2
2	4
3	8
4	5
5	10
6	9
7	7
8	3
9	6

Function $f(x) = g^x \mod p$

Discrete log is hard in many other groups!

How to construct PKE based on the **hardness of discrete log**?

RSA was a trapdoor permutation, so the construction was quite easy...

In case of the **discrete log**, we just have a one-way function.

Diffie and Hellman constructed something weaker than PKE: a **key exchange protocol** (also called key **agreement** protocol).

We'll not describe it. Then, we'll show how to "convert it" into a **PKE**.

Plan

- 1. Rabin encryption
- 2. ElGamal encryption
 - 1. a tool: Diffie-Hellman key exchange
 - 2. ElGamal encryption
- 3. Homomorphic encryption and Paillier cryptosystem
- 4. Practical considerations
- 5. Theoretical overview

Key exchange

initially they share no secret

The Diffie-Hellman Key exchange

- *G* a group, where discrete log is believed to be hard *q* := |*G*|
- *g* a generator of *G*

Security of the Diffie-Hellman key exchange

Eve should have no information about g^{yx} .

Is it secure?

If the **discrete log in** *G* is easy then the **DH key exchange** is **not** secure.

(because the adversary can compute x and y from g^x and g^y)

If the discrete log in **G** is hard, then...

it may also not be secure

Example for $G = Z_p^*$

We use the facts that:

- quadratic residues in Z^{*}_p are even powers of the generator, and
- testing membership in QR_p is computationally easy (even for large p).

Solution (see previous lectures)

Instead of working in Z_p^* work in its **subgroup**: QR_p

How to find a generator of **QR**_{*p*}?

A practical method: Choose *p* that is a strong prime, which means that:

 $p = 2 \cdot q + 1$, with q prime.

Hence: **QR**_p has a **prime order** (**q**).

Every element (except of 1) of a group of a prime order is its generator!
<u>Therefore</u>: every element of QR_p is a generator.

The DH Key exchange over QR group Take a prime $p = 2 \cdot q + 1$, with q prime. Take any $h \in Z_p$ such that $h \neq \pm 1$ and let $g = h^2 \mod p$.

But is the partial information leakage really a problem?

We need to

- 1. **formalize** what we mean by secure key exchange,
- 2. identify the **assumptions needed** to prove the security.

Informal definition:

(A, B) is secure if no "efficient adversary" can distinguish
 k from random, given T, with a "non-negligible advantage".

How to formalize it?

We say (*A*, *B*) is secure a secure key-exchange protocol if: the output of *A* and *B* is always the same, and

$$\bigvee_{\substack{\text{poly-time}\\M}} |P(M(1^n, T, k) = 1) - P(M(1^n, T, r) = 1)| \le \operatorname{negl}(n)$$

How to make *G* dependent on 1^n ?

In **practice** often a fixed group is used.

In **theory** we need to have a **new group** G for every value of 1^n .

So, we need to define an algorithm that generates G and its generator g.

Group generating algorithm GenG

Example of GenG

How does the protocol look now?

If such a key exchange protocol is secure, we say that: the **Decisional Diffie-Hellman (DDH) problem is hard with respect to GenG**)

Formally

Decisional Diffie-Hellman (DDH) problem is hard relative to **GenG** if for every poly-time algorithm *A* we have that

 $|P(A(G,q,g,g^x,g^y,g^z) = 1) - P(A(G,q,g,g^x,g^y,g^{xy}) = 1)|$ $\leq \operatorname{negl}(n)$

where

 $(G, q, g) \leftarrow \operatorname{GenG}(1^n)$

and

 $x, y, z \leftarrow Z_q$

Examples

DDH is believed to be hard relative to **GenG_{QR}**

Other examples: elliptic curves

How does DDH compare to the discrete log assumption

The opposite implication is unknown in most of the cases

A problem

The protocols that we discussed are secure only against a **passive adversary** (that only eavesdrop).

What if the adversary is **active**?

She can launch a "man-in-the-middle attack".

Man in the middle attack

A very realistic attack!

So, is this thing totally useless? No! (it is useful as a building block)

Plan

- 1. Rabin encryption
- 2. ElGamal encryption
 - 1. tool: Diffie-Hellman key exchange
 - 2. ElGamal encryption
- 3. Homomorphic encryption and Paillier cryptosystem
- 4. Practical considerations
- 5. Theoretical overview

ElGamal encryption

ElGamal is another popular public-key encryption scheme.

Introduced in:

[Taher ElGamal "A Public key Cryptosystem and A Signature Scheme based on discrete Logarithms". *IEEE Transactions on Information Theory*. 1985]

It is based on the **Diffie-Hellman** key-exchange.

First observation

Remember that the one-time pad scheme can be generalized to any group *G*?

 $\mathcal{K} = \mathcal{M} = C = G$ Enc(k, m) = m · k Dec(k, m) = m · k^{-1}

So, if k is the key agreed in the DH key exchange, then Alice can send a message $M \in G$ to Bob "encrypting it with k" by setting: $c := m \cdot k$

$$c := m \cdot k$$

Note: this is essentially the **KEM/DEM** method from **Lecture 8**.

How does it look now?

The last two messages can be sent together

ElGamal encryption

ElGamal encryption

Let **GenG** be such that **DDH** is hard with respect to **GenG**.

Gen(1^{*n*}) first runs **GenG** to obtain *G*, *g* and *q*. Then, it chooses $x \leftarrow Z_q$ and computes $h_1 := g^x$.

The public key is (G, g, q, h_1) . The private key is (G, g, q, x).

 $Enc((G, g, q, h_1), m) := (m \cdot h_1^y, g^y),$ where $m \in G$ and y is a random element of G(note: it is randomized by definition)

 $Dec((G, g, q, x), (c_1, h_2)) := c_1 \cdot h_2^{-x}$

Correctness

$$h = g^x$$

$$\operatorname{Enc}((\boldsymbol{G},\boldsymbol{g},\boldsymbol{q},\boldsymbol{h}),\boldsymbol{m})=(\boldsymbol{m}\cdot\boldsymbol{h}^{\boldsymbol{y}},\boldsymbol{g}^{\boldsymbol{y}})$$

$$Dec((G, g, q, x), (c_1, h_2)) = c_1 \cdot h_2^{-x}$$

= $m \cdot h^y \cdot (g^y)^{-x}$
= $m \cdot (g^x)^y \cdot (g^y)^{-x}$
= $m \cdot g^{xy} \cdot g^{-yx}$
= m

ElGamal – implementation issues

Which group to choose?

E.g.: **QR**_{*p*}, where *p* is a strong prime, i.e.: $q = \frac{p-1}{2}$ is also prime.

Plaintext space is a set of integers $\{1, ..., q\}$.

How to map an integer $i \in \{1, ..., q\}$ to QR_p ?

Just square:

 $f(i) = i^2 \mod p.$

Why is it **one-to-one**?

Remember this picture (from previous lectures)?

The mapping

So

 $f(i) = i^2 \operatorname{mod} p$

is **one-to-one** (on **{1**, ..., **q**}).

Is it also efficiently invertible?

Yes (this was discussed on Lecture 7)

Plan

- 1. Rabin encryption
- 2. ElGamal encryption
- 3. Homomorphic encryption and Paillier cryptosystem
- 4. Practical considerations
- 5. Theoretical overview

ElGamal has an interesting property

homomorphism with respect to multiplication:

A "product of two ciphertexts" decrypts to a product of their corresponding messages.

Why?

- **public key**: (*G*, *g*, *q*, *h*)
- **private key**: (*G*, *g*, *q*, *x*)
- $c \coloneqq \operatorname{Enc}((G, g, q, h), m) := (m \cdot h^y, g^y)$, where $y \leftarrow G$
- $c' \coloneqq \operatorname{Enc}((G, g, q, h), m') := (m' \cdot h^{y'}, g^{y'}), \text{ where } y' \leftarrow G$

product of *c* and *c*':

$$(\boldsymbol{m} \cdot \boldsymbol{m}' \cdot \boldsymbol{h}^{\boldsymbol{y}} \cdot \boldsymbol{h}^{\boldsymbol{y}'}, \boldsymbol{g}^{\boldsymbol{y}} \cdot \boldsymbol{g}^{\boldsymbol{y}'}) = (\boldsymbol{m} \cdot \boldsymbol{m}' \cdot \boldsymbol{h}^{\boldsymbol{y}+\boldsymbol{y}'}, \boldsymbol{g}^{\boldsymbol{y}+\boldsymbol{y}'})$$

this is an encryption of $m \cdot m'$ with randomness y + y'

Homomorphism – good or bad?

Sometimes homomorphism is a security weakness (think of the **CCA security**).

On the other hand: it can also be a plus.

One example: cloud computing

Example: outsourcing computation

Observe: the server doesn't learn the x_i 's!

This can be generalized!

The example on the previous slide was a bit artificial. But think about the following.

Fully homomorphic encryption (FHE)

Constructing encryption scheme that would allow "homorphic computation" of any function *f* was an open problem until 2009.

The first such construction was given in: Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. ACM Symposium on Theory of Computing (STOC), 2009.

Working towards construction of **practical FHE** is an active research area.

A natural (but much simpler) question

Can we construct an encryption scheme that is homomorphic **with respect to addition**?

Answer: Yes, Paillier cryptosystem

[Pascal Paillier "Public-Key Cryptosystems Based on Composite Degree Residuosity Classes". EUROCRYPT 1999]

Paillier cryptosystem works over $Z_{N^2}^*$, where *N* is an **RSA modulus**

Let $N \coloneqq pq$. public key: Nprivate key: (p, q)

How does $Z_{N^2}^*$ look like?

Observe:

$$\varphi(N^2) = p(p-1) \cdot q(q-1)$$

= $pq \cdot (p-1)(q-1)$
= $N \cdot \varphi(N)$

Fact

 $Z_{N^2}^*$ is isomorphic to $Z_N \times Z_N^*$ with the following isomorphism

$$f: Z_N \times Z_N^* \to Z_{N^2}^*$$

 $f(a,b) = (1+N)^a \cdot b^N \mod N^2$

If x = f(a, b) then we will also write: $x \leftrightarrow (a, b)$ [proof: exercise]

Another fact

Fact: for any integer a we have that $(1 + N)^a = 1 + a \cdot N \pmod{N^2}$

Proof:

$$(1+N)^{a} = 1 + {\binom{a}{1}}N^{1} + {\binom{a}{2}}N^{2} + \dots + {\binom{a}{1}}N^{a}$$
$$= 1 + {\binom{a}{1}}N \pmod{N^{2}}$$
$$= 1 + a \cdot N \pmod{N^{2}}$$

QED

A consequence of this fact

Fact: for any integer a we have that $(1 + N)^a = 1 + a \cdot N \pmod{N^2}$

Consequence: order of 1 + N in $Z_{N^2}^*$ is **N**.

why?

because:

- for 0 < a < N we have $1 < 1 + a \cdot N < N^2$
- and $1 + N \cdot N = 1 \pmod{N^2}$

Nth residues in $Z_{N^2}^*$

A number $y \in \mathbb{Z}_{N^2}^*$ is called an *N*th residue modulo N^2 if there exists $x \in \mathbb{Z}_{N^2}^*$ such that

 $y = x^N \mod N^2$

How do the **N**th residues look like?

A form of every **N**th residue

Suppose $x \leftrightarrow (a, b)$. Then $x^N \leftrightarrow (N \cdot a \mod N, b^N \mod N)$ $= (0, b^N \mod N)$

So every **N**th residue is of a form

 $y \leftrightarrow (0, c)$

Is every element of this form an **N**th residue?

A proof that every element (**0**, *c*) is an *N*th residue

Take $y \leftrightarrow (0, c)$. Let $d = N^{-1} \mod \varphi(N)$.

this is possible because $N \perp \varphi(N)$

For an arbitrary $a \in Z_N$ let x be such that $x \leftrightarrow (a, c^d)$

[exercise]

We have:

$$x^{N} \leftrightarrow (Na \mod N, c^{dN} \mod N)$$

= $(0, c^{dN \mod \varphi(N)})$
= $(0, c^{1})$
= $(0, c)$

Observe: this also shows that every *N*th residue *y* has exactly *N* roots $\sqrt[N]{y}$.

The **N**th residues pictorially

Also

The **N**th roots of every (0, c) have a form (a, c^d) :

Corollary

It's easy to choose a random *N*th residue:

Just take a random element $x \leftarrow Z_{N^2}^*$ and compute $y = x^N \mod N^2$.

Which problem is hard $Z_{N^2}^*$ (if one doesn't know p and q)?

Decisional composite residuosity (DCR) assumption

Informally:

It is hard to distinguish random element of $\operatorname{Res}(N^2)$ from a random element of $Z_{N^2}^*$.

How to encrypt?

Main idea: messages are elements $x \leftrightarrow (a, 1)$ (for $a \in Z_N$)

To encrypt a message *m* multiply it by a random $r \leftarrow \text{Res}(N^2)$:

 $\operatorname{Enc}_N(m) = m \cdot r$

Two questions

- 1. Is this **secure**?
- 2. How to **decrypt**?

Security follows from the **DCR** assumption

Proof (sketch): Take the original scheme

 $\operatorname{Enc}_N(m) = m \cdot r$ where $r \leftarrow \operatorname{Res}(N^2)$

and modify it as follows:

 $\operatorname{Enc}_N(m) = m \cdot r$ where $r \leftarrow Z_{N^2}^*$

Easy to see:

- 1. the **modified scheme hides the message completely** (it's a "generalized one-time pad")
- 2. if these two schemes can be distinguished then the DCR assumption is broken.

How to decrypt?

 $Enc_N(m) = m \cdot r \text{ where } r \leftarrow Res(N^2)$

Let's view encryption as a function in $Z_N \times Z_N^*$: $Enc_N(a, 1) \leftrightarrow (a + 0, 1 \cdot b)$ where $b \leftarrow Z_N^*$ = (a, b)

Problem:

the receiver can only see f(a, b). How can he "extract" a from it?

Observation

 $(f(a,b))^{\varphi(N)} \mod N^2 \leftrightarrow (\varphi(N) \cdot a \mod N, b^{\varphi(N)} \mod N)$ $= (\varphi(N) \cdot a \mod N, 1)$ $\leftrightarrow f(\varphi(N) \cdot a \mod N, 1)$ here we use the fact $= (1 + N)^{\varphi(N) \cdot a \mod N} \cdot 1^n \mod N^2$ that $= (1 + N)^{\varphi(N) \cdot a \mod N} \mod N^2$ $(1 + N)^{a}$ $= \mathbf{1} + (\boldsymbol{\varphi}(N) \cdot \boldsymbol{a} \mod N) \cdot N \mod N^2$ $= 1 + a \cdot N \pmod{N^2}$ $< N^2$ $= 1 + (\varphi(N) \cdot a \mod N) \cdot N$ So: $\varphi(N) \cdot a \mod N = \frac{(f(a, b))^{\varphi(N)} \mod N^2 - 1}{N}$

Continued:

denote it **z**

We got that $\varphi(N) \cdot a \mod N = \frac{(f(a,b))^{\varphi(N)} \mod N^2 - 1}{N}$ Therefore $a = z \cdot (\varphi(N))^{-1} \mod N$

Paillier encryption

Key generation: let N ≔ pq like in RSA
public key: N
private key: (p, q)

Encryption: $\operatorname{Enc}_N(m) = (1 + N)^m \cdot r^N \mod N^2$ where $r \leftarrow Z_N^*$

<u>Decryption</u>: $Dec_{p,q}(c) = \frac{(c^{\varphi(N)} \mod N^2) - 1}{N} \cdot \varphi(N)^{-1} \mod N$

Why is this additively homomorphic?

 $c = \operatorname{Enc}_N(m) \leftrightarrow (m, r)$ where $r \leftarrow Z_N^*$ $c' = \operatorname{Enc}_N(m') \leftrightarrow (m', r')$ where $r' \leftarrow Z_N^*$

We have:

$$c \cdot c' \leftrightarrow (m, r) \cdot (m, r)$$

= $(m + m', r \cdot r')$
 $\leftrightarrow \operatorname{Enc}_N(m + m')$ with randomness $r \cdot r'$

Plan

- 1. Rabin encryption
- 2. ElGamal encryption
- 3. Homomorphic encryption and Paillier cryptosystem
- 4. Practical considerations
- 5. Theoretical overview

ElGamal vs. RSA

In practice RSA and ElGamal (in Z_p^*) have similar security for equivalent key lengths.

- **RSA** is slightly more efficient
- **ElGamal** has a ciphertext twice as long as the plaintext
- But **ElGamal** can be generalized to other groups (e.g. the **elliptic curves**) where it is much more efficient!

NIST recommendations

bits of security	RSA modulus length	discrete log in order q subgroups of Z _p^*	discrete log in elliptic curves of order:
≤ 80	1024	p = 1024 q = 160	160
112	2048	p = 2048 q = 224	224
128	3072	p = 3072 q = 256	256
192	7680	p = 7680 q = 384	384
256	15360	p = 15360 q = 512	512

[NIST Special Publication 800-57 Part 1 Revision 4 Recommendation for Key Management]

Quantum attacks

All the schemes presented so far can be broken by quantum computers using Shor's algorithm.

[Peter W. Shor "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer" 1995]

Peter Shor 1959—

There exists public-key encryption schemes that are believed to be secure against quantum computers (see **post-quantum cryptography**)

Plan

- 1. Rabin encryption
- 2. ElGamal encryption
- 3. Homomorphic encryption and Paillier cryptosystem
- 4. Practical considerations
- 5. Theoretical overview

A natural question

Is public-key encryption a member of **Minicrypt**? **Answer**: **NO** (as far as we know).

More precisely: nobody knows how to construct **PKE** from **one-way functions**.

However, the following implication is known:

This is proven using the **hardcore predicates**.

Hard-core predicates

Hard-core **predicates** are a generalization of hardcore **bits**.

Definition (informal)

 $\begin{array}{l} \pi: \{\mathbf{0},\mathbf{1}\}^n \to \{\mathbf{0},\mathbf{1}\} \text{ is a hard core predicate for a} \\ \text{trap-door permutation } \mathbf{f}: \ \{\mathbf{0},\mathbf{1}\}^n \to \ \{\mathbf{0},\mathbf{1}\}^n \text{ if it is} \\ \text{hard to guess } \pi(\mathbf{f}^{-1}(\mathbf{y})) \text{ from } \mathbf{y} \\ \text{(with probability significantly better than } \mathbf{1/2}). \end{array}$

A fact

Does every trap-door permutation have a hardcore predicate?

<u>Almost:</u>

Suppose that **f** is a trap-door permutation.

It can be used to build a trap-door permutation *g* that has a hard-core predicate.

How to encrypt with such an *g*?

Encryption for messages of length 1: **public key**: description of *g* **private key**: trapdoor *t* for *g*

> $Enc_g(b) = (\pi(x) \oplus b, g(x))$ where $x \in Z_N^*$ is random.

$$\operatorname{Dec}_t(b',y) = \pi(g^{-1}(y)) \oplus b$$

The general picture

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.