
Lecture 9

Public-Key Encryption II

28.11.18 version 1.0

Stefan Dziembowski
www.crypto.edu.pl/Dziembowski

University of Warsaw

http://www.crypto.edu.pl/Dziembowski

Plan

1. Rabin encryption

2. ElGamal encryption

3. Homomorphic encryption and Paillier
cryptosystem

4. Practical considerations

5. Theoretical overview

The situation

public-key encryption
exists

RSA assumption
holds

factoring RSA moduli
is hard

question:

can we construct
PKE based on the

“factoring
assumption”

Yes:
Rabin encryption

Rabin encrypion

• introduced by
Michael O. Rabin in 1979

• based on squaring in 𝒁𝑵
∗

• security equivalent to factoring

Michael O. Rabin (Wrocław 1931 –)

One of the founding fathers of
computer science.
• introduced non-determinism
• decidability of the monadic second

order logic
• efficient primality testing
• oblivious transfer,
•

received Turing Award in 1976

On previous lectures we proven the
following

Fact

Let 𝑵 be a random RSA modulus.

The problem of computing square roots (modulo 𝑵) of
random elements in 𝐐𝐑𝑵 is poly-time equivalent to the
problem of factoring 𝑵.

one can
factor 𝑵 in
poly-time

one can
compute

square roots
modulo 𝑵

(1)

(2)

In other words

“squaring in 𝒁𝑵
∗ ” is a one-way function (assuming

the factoring RSA moduli is hard).

Define:
𝐑𝐚𝐛𝐢𝐧: 𝒁𝑵

∗ → 𝒁𝑵
∗

as
𝐑𝐚𝐛𝐢𝐧 𝒙 ≔ 𝒙𝟐 𝐦𝐨𝐝 𝑵

A fact about squaring modulo 𝑵 = 𝒑𝒒?

𝒁𝑵
∗ 𝒁𝑵

∗

𝐑𝐚𝐛𝐢𝐧𝑵(𝒙) = 𝒙𝟐𝐦𝐨𝐝 𝑵

This function “glues” 𝟒 elements together.

Example for 𝑵 = 𝟏𝟓

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 4 3 1 5 6 4 4 9 10 1 12 4 1

𝒁𝟏𝟓
∗

𝐐𝐑𝟏𝟓: 1 4

𝒙

𝒙𝟐

How to base encryption on this?

Idea:
public key: 𝑵 = 𝒑𝒒

private key: (𝒑, 𝒒)

encryption: 𝐄𝐧𝐜𝑵 𝒙 = 𝒙𝟐𝐦𝐨𝐝 𝑵

decryption: 𝐃𝐞𝐜 𝒑,𝒒 𝒚 = 𝒚𝐦𝐨𝐝 𝑵

Problem: there are 𝟒 square roots.

Solution: “make the inversion unique”.

can be computed
efficiently if one knows 𝒑

and 𝒒 (see Lecture 7)

How to do it?
An ad-hoc method: add an encoding (like in the “real RSA
encryption”).

In such a way that only 𝟏 out of the 𝟒 square roots “make
sense”.

𝒁𝑵
∗ 𝒁𝑵

∗

𝒇(𝒙) = 𝒙𝟐𝐦𝐨𝐝 𝑵In other
words:

make the
set of legal
messages
is “sparse”

Another approach

Fact

Suppose 𝑵 = 𝒑𝒒 where
𝒑 = 𝒒 = 𝟑 (𝐦𝐨𝐝 𝟒)

Then the function
𝐑𝐚𝐛𝐢𝐧𝑵(𝒙) = 𝒙𝟐𝐦𝐨𝐝 𝑵

is a permutation when restricted to 𝐐𝐑𝑵
𝐑𝐚𝐛𝐢𝐧𝑵 ∶ 𝐐𝐑𝑵 𝐐𝐑𝑵

Such an 𝑵 is called a
“Blum integer”

How does it look?

𝒁𝑵
∗ 𝒁𝑵

∗

𝐑𝐚𝐛𝐢𝐧𝑵(𝒙) = 𝒙𝟐𝐦𝐨𝐝 𝑵

𝐐𝐑𝑵 𝐐𝐑𝑵

Rabin restricted to 𝐐𝐑𝑵 is a
permutation

𝒁𝑵
∗ 𝒁𝑵

∗

𝐑𝐚𝐛𝐢𝐧𝑵(𝒙) = 𝒙𝟐𝐦𝐨𝐝 𝑵

𝐐𝐑𝑵 𝐐𝐑𝑵

Proof that 𝐑𝐚𝐛𝐢𝐧𝑵(𝒙) = 𝒙𝟐𝐦𝐨𝐝 𝑵
restricted to 𝐐𝐑𝑵 is a permutation

(𝑵 = 𝒑𝒒, where 𝒑 = 𝒒 = 𝟑𝐦𝐨𝐝 𝟒)

We prove that Rabin is injective, i.e. for every 𝒙, 𝒚  QRN
we have that

𝒙𝟐 = 𝒚𝟐 ⟹ 𝒙 = 𝒚

Observation: by CRT it is enough to show that

• 𝒙𝟐 = 𝒚𝟐 ⟹ 𝒙 = 𝒚𝐦𝐨𝐝 𝒑 and

• 𝒙𝟐 = 𝒚𝟐 ⟹ 𝒙 = 𝒚𝐦𝐨𝐝 𝒒.

By symmetry it’s also enough to show it just for 𝒑.

Proof
Suppose we have 𝒙, 𝒚  QRN such that

𝒙𝟐 = 𝒚𝟐 mod N

𝒙𝟐 = 𝒚𝟐𝐦𝐨𝐝 𝒑

𝒈𝟒𝒊 = 𝒈𝟒𝒋𝐦𝐨𝐝 𝒑

𝒈𝟒(𝒊−𝒋) = 𝟏𝐦𝐨𝐝 𝒑

𝒑 − 𝟏 | 𝟒(𝒊 − 𝒋)

𝟒𝒌 + 𝟐 | 𝟒(𝒊 − 𝒋)

𝟐𝒌 + 𝟏 | 𝟐(𝒊 − 𝒋)

𝟐𝒌 + 𝟏 | 𝒊 − 𝒋

𝒊 = 𝒋

𝒙 = 𝒚𝐦𝐨𝐝 𝒑

Let 𝒊, 𝒋 ∈ 𝐍 be such that

• 𝒙 = 𝒈𝟐𝒊 𝐦𝐨𝐝 𝒑 and
• 𝒚 = 𝒈𝟐𝒋 𝐦𝐨𝐝 𝒑

where 𝒈 is a generator of 𝒁𝒑
∗

and

𝟎 ≤ 𝒋 ≤ 𝒊 <
𝒑 − 𝟏

𝟐

=
𝟒𝒌 + 𝟐

𝟐

= 𝟐𝒌 + 𝟏 QED

Let 𝒑 = 𝟒𝒌 +3, where 𝒌 ∈ 𝐍

How to encrypt a one-bit message 𝒃?

𝑵 – public key

(𝒑, 𝒒) – private key

𝐄𝐧𝐜𝑵(𝒃) = (𝐋𝐒𝐁 𝒙 ⊕ 𝒃,𝐑𝐚𝐛𝐢𝐧𝑵(𝒙)),

where 𝒙 ∈ 𝐐𝐑𝑵 is random.

𝐃𝐞𝐜𝒑,𝒒 𝒃′, 𝒚 = 𝐋𝐒𝐁 𝐑𝐚𝐛𝐢𝐧𝑵
−𝟏 𝒚 ⊕ 𝒃′

a Blum integer

Fact: the least significant bit is a hard-core bit for the
Rabin permutation.

this can be computed if one knows 𝒑 and 𝒒

𝐑𝐚𝐛𝐢𝐧𝑵 (𝒙) = 𝒙𝟐𝐦𝐨𝐝 𝑵

𝐑𝐚𝐛𝐢𝐧𝑵 ∶ 𝐐𝐑𝑵 𝐐𝐑𝑵

Moral

public-key encryption
exists

factoring RSA moduli
is hard

Plan

1. Rabin encryption

2. ElGamal encryption
1. a tool: Diffie-Hellman key exchange

2. ElGamal encryption

3. Homomorphic encryption and Paillier
cryptosystem

4. Practical considerations

5. Theoretical overview

1
2

3

4

5
6

7

8

9

10

Remember the exponentiation
modulo a prime?

𝒙 𝟐𝒙𝐦𝐨𝐝 𝟏𝟏

0 1

1 2

2 4

3 8

4 5

5 10

6 9

7 7

8 3

9 6

𝟐 is a generator of 𝒁𝟏𝟏
∗

Discrete log
Function

𝒇(𝒙) = 𝒈𝒙𝐦𝐨𝐝 𝒑x gx

0 1

1 2

2 4

3 8

4 5

5 10

6 9

7 7

8 3

9 6

easy to compute

believed to be hard to
compute for large 𝒑

𝒇−𝟏 is also denoted 𝐥𝐨𝐠𝒈
and called the discrete

logarithm
Discrete log is hard in
many other groups!

How to construct PKE based on the
hardness of discrete log?

RSA was a trapdoor permutation, so the construction
was quite easy...

In case of the discrete log, we just have a one-way
function.

Diffie and Hellman constructed something weaker than
PKE: a key exchange protocol (also called key
agreement protocol).

We’ll not describe it. Then, we’ll show how to “convert
it” into a PKE.

Plan

1. Rabin encryption

2. ElGamal encryption
1. a tool: Diffie-Hellman key exchange

2. ElGamal encryption

3. Homomorphic encryption and Paillier
cryptosystem

4. Practical considerations

5. Theoretical overview

listens

Key exchange

Alice Bob

initially they share no secret

key 𝒌 key 𝒌

Eve should have no information about 𝒌

We will formalize it later.
Let’s first show the protocol.

The Diffie-Hellman Key exchange
• 𝑮 – a group, where discrete log is believed to be hard

• 𝒒 ∶= |𝑮|

• 𝒈 – a generator of 𝑮

Alice Bob

𝒙 ← 𝒁𝒒
𝒉𝟏 = 𝒈𝒙

𝒚 ← 𝒁𝒒
𝒉𝟐 = 𝒈𝒚

output:
𝒌𝑨 = (𝒉𝟐)

𝒙
output:

𝒌𝑩 = (𝒉𝟏)
𝒚

equal to:
𝒈𝒚𝒙

equal to:
𝒈𝒙𝒚

equal!

Security of the Diffie-Hellman key exchange

Eve

𝒉𝟏 = 𝒈𝒙 𝒉𝟐 = 𝒈𝒚𝑮,𝒈

knows

Eve should have no information about 𝒈𝒚𝒙.

𝒈𝒚𝒙 ?

If the discrete log in 𝑮 is hard, then...

it may also not be secure

Is it secure?

If the discrete log in 𝑮 is easy then the DH key
exchange is not secure.

(because the adversary can compute 𝒙 and 𝒚 from
𝒈𝒙 and 𝒈𝒚)

Example for 𝑮 = 𝒁𝒑
∗

We use the facts that:

• quadratic residues in 𝒁𝒑
∗ are even powers of

the generator, and

• testing membership in 𝐐𝐑𝒑 is computationally
easy (even for large 𝒑).

Suppose 𝑮 = 𝒁𝒑
∗

Alice Bob

𝒙 ← 𝒁𝒑−𝟏
𝒉𝟏 = 𝒈𝒙

𝒚 ← 𝒁𝒑−𝟏
𝒉𝟐 = 𝒈𝒚

𝒙 is even iff 𝒉𝟏 ∈ 𝐐𝐑𝒑

𝒚 is even iff 𝒉𝟐 ∈ 𝐐𝐑𝒑

Therefore:
𝒈𝒙𝒚 ∈ 𝐐𝐑𝒑 iff (𝒉𝟏 ∈ 𝐐𝐑𝒑 or 𝒉𝟐 ∈ 𝐐𝐑𝒑)

So, Eve can compute some information
about 𝒈𝒙𝒚 (namely: if it is a QR, or not).

𝒈𝒙𝒚 ?

= 𝒈𝒙𝒚 𝐦𝐨𝐝 𝒑−𝟏

29

Solution (see previous lectures)

Instead of working in 𝒁𝒑
∗ work in its subgroup: 𝐐𝐑𝒑

How to find a generator of 𝐐𝐑𝒑?

A practical method: Choose 𝒑 that is a strong prime,
which means that:

𝒑 = 𝟐 ⋅ 𝒒 + 𝟏, with 𝒒 prime.

Hence: 𝐐𝐑𝒑 has a prime order (𝒒).

Every element (except of 𝟏) of a group of a prime order is
its generator!

Therefore: every element of 𝐐𝐑𝒑 is a generator.

The DH Key exchange over QR group
Take a prime 𝒑 = 𝟐 ⋅ 𝒒 + 𝟏, with 𝒒 prime.

Take any 𝒉 ∈ 𝒁𝒑 such that 𝒉 ≠ ±𝟏 and let 𝒈 = 𝒉𝟐𝐦𝐨𝐝 𝒑 .

Alice Bob

𝒙 ← 𝒁𝒒
𝒉𝟏 = 𝒈𝒙

𝒚 ← 𝒁𝒒
𝒉𝟐 = 𝒈𝒚

output:
𝒌𝑨 = (𝒉𝟐)

𝒙
output:

𝒌𝑩 = (𝒉𝟏)
𝒚

But is the partial information
leakage really a problem?

We need to

1. formalize what we mean by secure key
exchange,

2. identify the assumptions needed to prove the
security.

Alice Bob

key 𝒌 ∈ 𝑲 key 𝒌 ∈ 𝑲

“transcript” 𝑻: the sequence of
exchanged messages:

interactive
probabilistic

Turing machine 𝑨

interactive
probabilistic

Turing machine 𝑩

Informal definition:
(𝑨, 𝑩) is secure if no “efficient adversary” can distinguish
𝒌 from random, given 𝑻, with a “non-negligible advantage”.

key 𝒌

𝑻

random element of 𝑲

?

some finite set

How to formalize it?

𝑨 𝑩

key 𝒌 ∈ 𝑲

security parameter 𝟏𝒏

key 𝒌 ∈ 𝑲

We say (𝑨, 𝑩) is secure a secure key-exchange protocol if:
the output of 𝑨 and 𝑩 is always the same, and

∀
poly-time

𝑴

𝑷 𝑴 𝟏𝒏, 𝑻, 𝒌 = 𝟏 − 𝑷 𝑴 𝟏𝒏, 𝑻, 𝒓 = 𝟏 ≤ 𝐧𝐞𝐠𝐥(𝒏)

𝒓 ← 𝑲

𝑻

may depend on 𝟏𝒏

How to make 𝑮 dependent on 𝟏𝒏?

In practice often a fixed group is used.

In theory we need to have a new group 𝑮 for every
value of 𝟏𝒏.

So, we need to define an algorithm that generates 𝑮
and its generator 𝒈.

Group generating algorithm 𝐆𝐞𝐧𝐆

GenG𝟏𝒏

(𝑮, 𝒒, 𝒈)
description of a group 𝑮,
order 𝒒 of 𝑮, and
a generator 𝒈 of 𝑮.

poly-time randomized
algorithm

Example of 𝐆𝐞𝐧𝐆

𝐆𝐞𝐧𝐆𝐐𝐑𝟏𝒏

(𝒁𝒑, 𝒒, 𝒈)
where:

• 𝒑, 𝒒 – random primes such that
𝒑 = 𝒏 and 𝒑 = 𝟐 ⋅ 𝒒 + 𝟏

• and 𝒈 = 𝒉𝟐𝐦𝐨𝐝 𝒑, where
𝒉 ← 𝒁𝒑 ∖ −𝟏, 𝟏

How does the protocol look now?

Alice Bob

𝒙 ← 𝒁𝒒

𝒚 ← 𝒁𝒒
𝒉𝟐 = 𝒈𝒚

security parameter 𝟏𝒏

𝑮,𝒈, 𝒒, 𝒉𝟏 = 𝒈𝒙

(𝑮, 𝒈, 𝒒) ← 𝐆𝐞𝐧𝐆(𝟏𝒏)

output:
𝒌𝑨 = (𝒉𝟐)

𝒙
output:

𝒌𝑩 = (𝒉𝟏)
𝒚

If such a key exchange protocol is secure, we say that: the
Decisional Diffie-Hellman (DDH) problem is hard with

respect to GenG)

Formally

Decisional Diffie-Hellman (DDH) problem is hard relative to
GenG if for every poly-time algorithm 𝑨 we have that

𝑷 𝑨 𝑮, 𝒒, 𝒈, 𝒈𝒙, 𝒈𝒚, 𝒈𝒛 = 𝟏 − 𝑷 𝑨(𝑮, 𝒒, 𝒈, 𝒈𝒙, 𝒈𝒚, 𝒈𝒙𝒚 = 𝟏 |

≤ 𝐧𝐞𝐠𝐥(𝒏)

where

𝑮, 𝒒, 𝒈 ← 𝐆𝐞𝐧𝐆 𝟏𝒏

and

𝒙, 𝒚, 𝒛 ← 𝒁𝒒

Examples

DDH is believed to be hard relative to 𝐆𝐞𝐧𝐆𝐐𝐑

Other examples: elliptic curves

How does DDH compare to the
discrete log assumption

DDH is hard
relative to 𝐆𝐞𝐧𝐆

discrete log is hard
relative to 𝑯

implies

The opposite implication is unknown in most of the cases

She can launch a “man-in-the-middle attack”.

A problem

The protocols that we discussed are secure only
against a passive adversary
(that only eavesdrop).

What if the adversary is active?

Man in the middle attack

Alice Bob

key 𝒌 key 𝒌′key 𝒌 key 𝒌′

I am Bob I am Alice

A very realistic attack!

So, is this thing totally useless?
No! (it is useful as a building block)

Plan

1. Rabin encryption

2. ElGamal encryption
1. tool: Diffie-Hellman key exchange

2. ElGamal encryption

3. Homomorphic encryption and Paillier
cryptosystem

4. Practical considerations

5. Theoretical overview

ElGamal encryption

ElGamal is another popular public-key
encryption scheme.

Introduced in:

[Taher ElGamal "A Public key
Cryptosystem and A Signature
Scheme based on discrete
Logarithms". IEEE Transactions on
Information Theory. 1985]

Taher ElGamal
(1955–)

It is based on the Diffie-Hellman key-exchange.

K = M = C = 𝑮
𝐄𝐧𝐜(𝒌,𝒎) = 𝒎 · 𝒌
𝐃𝐞𝐜(𝒌,𝒎) = 𝒎 · 𝒌−𝟏

First observation
Remember that the one-time pad scheme can be generalized
to any group 𝑮?

So, if 𝒌 is the key agreed in the DH key exchange, then Alice
can send a message 𝑴 ∈ 𝑮 to Bob “encrypting it with 𝒌” by
setting: 𝒄 ∶= 𝒎 · 𝒌

Alice Bob
𝒄 ∶= 𝒎 · 𝒌

Note: this is essentially the KEM/DEM method from Lecture 8.

How does it look now?

Alice Bob

𝒙 ← 𝒁𝒒 𝒚 ← 𝒁𝒒

𝒉𝟐 = 𝒈𝒚

(𝑮, 𝒈, 𝒒, 𝒉𝟏)

(𝑮, 𝒈, 𝒒) ← 𝐆𝐞𝐧𝐆(𝟏𝒏)

output:
𝒎’ ∶= 𝒄 · 𝒉𝟐

−𝒙

security parameter 𝟏𝒏

plaintext
𝒎

𝒄 ∶= 𝒎 · (𝒉𝟏)
𝒚

since (𝒉𝟐)
𝒙 = (𝒉𝟏)

𝒚

we get: 𝒎 = 𝒎’

𝒉𝟏 = 𝒈𝒙

The last two messages can be sent together

Alice Bob

𝒙 ← 𝒁𝒒 𝒚 ← 𝒁𝒒

(𝒉𝟐, 𝒄) ≔
𝒈𝒚,𝒎 · 𝒉𝟏

𝒚

(𝑮, 𝒈, 𝒒, 𝒉𝟏)

(𝑮, 𝒈, 𝒒) ← 𝐆𝐞𝐧𝐆(𝟏𝒏)

output:
𝒎’ ∶= 𝒄 · 𝒉𝟐

−𝒙

security parameter 𝟏𝒏

plaintext
𝒎

𝒉𝟏 = 𝒈𝒙

private key

public key

ciphertext

key generation

decryption

encryption

ElGamal encryption

Alice Bob

𝒙 ← 𝒁𝒒 𝒚 ← 𝒁𝒒

(𝒉𝟐, 𝒄) ≔
𝒈𝒚,𝒎 · 𝒉𝟏

𝒚

(𝑮, 𝒈, 𝒒, 𝒉𝟏)

(𝑮, 𝒈, 𝒒) ← 𝐆𝐞𝐧𝐆(𝟏𝒏)

output:
𝒎’ ∶= 𝒄 · 𝒉𝟐

−𝒙

security parameter 𝟏𝒏

plaintext
𝒎

𝒉𝟏 = 𝒈𝒙

ElGamal encryption

𝐆𝐞𝐧(𝟏𝒏) first runs GenG to obtain 𝑮,𝒈 and 𝒒. Then, it chooses
𝒙 ← 𝒁𝒒 and computes 𝒉𝟏 ∶= 𝒈𝒙.

Let 𝐆𝐞𝐧𝐆 be such that DDH is hard with respect to 𝐆𝐞𝐧𝐆.

𝐄𝐧𝐜((𝑮, 𝒈, 𝒒, 𝒉𝟏),𝒎) ∶= (𝒎 ⋅ 𝒉𝟏
𝒚
, 𝒈𝒚) ,

where 𝒎 ∈ 𝑮 and 𝒚 is a random element of 𝑮
(note: it is randomized by definition)

𝐃𝐞𝐜 𝑮, 𝒈, 𝒒, 𝒙 , 𝒄𝟏, 𝒉𝟐 : = 𝒄𝟏 · 𝒉𝟐
−𝒙

The public key is (𝑮, 𝒈, 𝒒, 𝒉𝟏).
The private key is (𝑮, 𝒈, 𝒒, 𝒙).

Correctness

𝐃𝐞𝐜 𝑮, 𝒈, 𝒒, 𝒙 , 𝒄𝟏, 𝒉𝟐 = 𝒄𝟏 · 𝒉𝟐
−𝒙

𝐄𝐧𝐜((𝑮, 𝒈, 𝒒, 𝒉),𝒎) = (𝒎 · 𝒉𝒚, 𝒈𝒚)

= 𝒎 · 𝒉𝒚 · 𝒈𝒚 −𝒙

= 𝒎 · (𝒈𝒙)𝒚 ⋅ 𝒈𝒚 −𝒙

= 𝒎 · 𝒈𝒙𝒚 · 𝒈−𝒚𝒙

= 𝒎

𝒉 = 𝒈𝒙

How to map an integer 𝒊 ∈ {𝟏, … , 𝒒} to 𝐐𝐑𝒑?

Just square:
𝒇(𝒊) = 𝒊𝟐𝐦𝐨𝐝 𝒑.

Why is it one-to-one?

ElGamal – implementation issues

Which group to choose?

E.g.: 𝐐𝐑𝒑, where 𝒑 is a strong prime, i.e.: 𝒒 =
𝒑−𝟏

𝟐
is also prime.

Plaintext space is a set of integers {𝟏,… , 𝒒}.

52

Remember this picture (from previous lectures)?

1

2

3

8

9

10

1

𝒁𝟏𝟏
∗ :

QR11:

9 4

𝒇(𝒙) = 𝒙𝟐

4

7

5

6
53

Is it also efficiently invertible?

Yes (this was discussed on Lecture 7)

The mapping

So
𝒇(𝒊) = 𝒊𝟐𝐦𝐨𝐝 𝒑

is one-to-one (on {𝟏, … , 𝒒}).

Plan

1. Rabin encryption

2. ElGamal encryption

3. Homomorphic encryption and Paillier
cryptosystem

4. Practical considerations

5. Theoretical overview

ElGamal has an interesting property

homomorphism with respect to multiplication:
A “product of two ciphertexts” decrypts to a product of
their corresponding messages.

𝐄𝐧𝐜𝒑𝒌 𝒎 = 𝒄, 𝒉 ,

𝐄𝐧𝐜𝒑𝒌 𝒎′ = 𝒄′, 𝒉′
𝒄 ⋅ 𝒄′, 𝒉 ⋅ 𝒉′

𝒎 ⋅𝒎′𝒎,𝒎′

multiply

multiply

d
ecry

p
t

d
ecry

p
t

Why?

• public key: (𝑮, 𝒈, 𝒒, 𝒉)

• private key: 𝑮,𝒈, 𝒒, 𝒙

𝒄 ≔ 𝐄𝐧𝐜((𝑮, 𝒈, 𝒒, 𝒉),𝒎) ∶= (𝒎 ⋅ 𝒉𝒚, 𝒈𝒚), where 𝒚 ← 𝑮

𝒄′ ≔ 𝐄𝐧𝐜((𝑮, 𝒈, 𝒒, 𝒉),𝒎′) ∶= (𝒎′ ⋅ 𝒉𝒚′, 𝒈𝒚′), where 𝒚′ ← 𝑮

product of 𝒄 and 𝒄′:
(𝒎 ⋅ 𝒎′ ⋅ 𝒉𝒚 ⋅ 𝒉𝒚

′
, 𝒈𝒚 ⋅ 𝒈𝒚′)

= 𝒎 ⋅ 𝒎′ ⋅ 𝒉𝒚+𝒚
′
, 𝒈𝒚+𝒚

′

this is an encryption of 𝒎 ⋅
𝒎′ with randomness 𝒚 + 𝒚′

Homomorphism – good or bad?

Sometimes homomorphism is a security weakness
(think of the CCA security).

On the other hand: it can also be a plus.

One example: cloud computing

Example: outsourcing computation

has a large set
𝒙𝟏, … , 𝒙𝒏 ⊆ 𝒁𝒑

∗

and wants to learn
𝒙 = 𝒙𝟏 ⋅ ⋯ ⋅ 𝒙𝒏 𝐦𝐨𝐝 𝒑

𝒑,
𝒄𝟏, … , 𝒄𝒏

for 𝒊 = 𝟏 to 𝒏:
𝒄𝒊 ≔ 𝐄𝐧𝐜𝒑𝒌(𝒙𝒊)

generated a key pair

𝒑𝒌 = 𝒁𝒑, 𝒈, 𝒑 − 𝟏, 𝒉

𝒔𝒌 = (𝒁𝒑, 𝒈, 𝒑 − 𝟏, 𝒙)

𝒄

computes
𝒄 ≔ 𝒄𝟏 ⋅ ⋯ ⋅ 𝒄𝒏 𝐦𝐨𝐝 𝒑

computes the
result as:
𝒙 ≔ 𝐃𝐞𝐜𝒔𝒌 𝒄

Observe: the server doesn’t learn the 𝒙𝒊‘s!

This can be generalized!
The example on the previous slide was a bit artificial.
But think about the following.

has some data 𝒙𝟏, … , 𝒙𝒏and wants to learn
𝒙 = 𝒇(𝒙𝟏, … , 𝒙𝒏) for some function 𝒇.

𝒑𝒌,
𝒄𝟏, … , 𝒄𝒏

for 𝒊 = 𝟏 to 𝒏:
𝒄𝒊 ≔ 𝐄𝐧𝐜𝒑𝒌(𝒙𝒊)

𝒄

computes 𝒄 from
𝒄𝟏, … , 𝒄𝒏

computes the
result as:
𝒙 ≔ 𝐃𝐞𝐜𝒔𝒌 𝒄

but how to do
it for any 𝒇?

Fully homomorphic encryption (FHE)

Constructing encryption scheme that would allow
“homomorphic computation” of any function 𝒇
was an open problem until 2009.

The first such construction was given in:
Craig Gentry. Fully Homomorphic Encryption Using
Ideal Lattices. ACM Symposium on Theory of
Computing (STOC), 2009.

Working towards construction of practical FHE is
an active research area.

A natural (but much simpler) question

Can we construct an encryption scheme that is
homomorphic with respect to addition?

Answer: Yes, Paillier cryptosystem

[Pascal Paillier "Public-Key Cryptosystems Based
on Composite Degree Residuosity Classes".
EUROCRYPT 1999]

Paillier cryptosystem works over 𝒁
𝑵𝟐
∗ ,

where 𝑵 is an RSA modulus

Let 𝑵 ≔ 𝒑𝒒.
public key: 𝑵
private key: (𝒑, 𝒒)

How does 𝒁
𝑵𝟐
∗ look like?

Observe:
𝝋 𝑵𝟐 = 𝒑 𝒑 − 𝟏 ⋅ 𝒒 𝒒 − 𝟏

= 𝒑𝒒 ⋅ 𝒑 − 𝟏 (𝒒 − 𝟏)
= 𝑵 ⋅ 𝝋(𝑵)

Fact

𝒁
𝑵𝟐
∗ is isomorphic to 𝒁𝑵 × 𝒁𝑵

∗ with the following
isomorphism

𝒇: 𝒁𝑵 × 𝒁𝑵
∗ → 𝒁

𝑵𝟐
∗

𝒇 𝒂, 𝒃 = 𝟏 + 𝑵 𝒂 ⋅ 𝒃𝑵 𝐦𝐨𝐝 𝑵𝟐

[proof: exercise]If 𝒙 = 𝒇 𝒂, 𝒃 then we will
also write: 𝒙 ↔ 𝒂, 𝒃

Another fact

Fact: for any integer 𝒂 we have that
𝟏 + 𝑵 𝒂 = 𝟏 + 𝒂 ⋅ 𝑵 𝐦𝐨𝐝 𝑵𝟐

Proof:

𝟏 + 𝑵 𝒂 = 𝟏 +
𝒂

𝟏
𝑵𝟏 +

𝒂

𝟐
𝑵𝟐 +⋯+

𝒂

𝟏
𝑵𝒂

= 𝟏 +
𝒂

𝟏
𝑵 𝐦𝐨𝐝 𝑵𝟐

= 𝟏 + 𝒂 ⋅ 𝑵 𝐦𝐨𝐝 𝑵𝟐

QED

A consequence of this fact

Consequence: order of 𝟏 + 𝑵 in 𝒁
𝑵𝟐
∗ is 𝑵.

why?
because:

• for 𝟎 < 𝒂 < 𝑵 we have 𝟏 < 𝟏 + 𝒂 ⋅ 𝑵 < 𝑵𝟐

• and 𝟏 + 𝑵 ⋅ 𝑵 = 𝟏 (𝐦𝐨𝐝 𝑵𝟐)

Fact: for any integer 𝒂 we have that

𝟏 + 𝑵 𝒂 = 𝟏 + 𝒂 ⋅ 𝑵 𝐦𝐨𝐝 𝑵𝟐

Structure of 𝒁
𝑵𝟐
∗

𝒁
𝑵𝟐
∗ ≅

𝟏

𝟎

𝑵 − 𝟏

𝑵 − 𝟏

𝒁𝑵
∗

𝒁𝑵

...

. . .

Multiplication in 𝒁
𝑵𝟐
∗

𝒁𝑵
∗

𝒁𝑵

𝒙 𝒙′ 𝒙 + 𝒙′

𝒚

𝒚′

𝒚 ⋅ 𝒚′

𝑵th residues in 𝒁
𝑵𝟐
∗

A number 𝒚 ∈ 𝒁
𝑵𝟐
∗ is called an 𝑵th residue modulo 𝑵𝟐

if there exists 𝒙 ∈ 𝒁
𝑵𝟐
∗ such that

𝒚 = 𝒙𝑵𝐦𝐨𝐝 𝑵𝟐

How do the 𝑵th residues look like?

A form of every 𝑵th residue

Suppose 𝒙 ↔ (𝒂, 𝒃).

Then
𝒙𝑵 ↔ (𝑵 ⋅ 𝒂 𝐦𝐨𝐝 𝑵, 𝒃𝑵 𝐦𝐨𝐝 𝑵)

= (𝟎, 𝒃𝑵𝐦𝐨𝐝 𝑵)

So every 𝑵th residue is of a form

𝒚 ↔ (𝟎, 𝒄)

Is every element of this form an 𝑵th residue?

Yes!

A proof that every element (𝟎, 𝒄)
is an 𝑵th residue

Take 𝒚 ↔ (𝟎, 𝒄). Let 𝒅 = 𝑵−𝟏 𝐦𝐨𝐝 𝝋(𝑵).

For an arbitrary 𝒂 ∈ 𝒁𝑵 let 𝒙 be such that
𝒙 ↔ 𝒂, 𝒄𝒅

We have:
𝒙𝑵 ↔ 𝑵𝒂𝐦𝐨𝐝 𝑵, 𝒄𝒅𝑵 𝐦𝐨𝐝 𝑵

= 𝟎, 𝒄𝒅𝑵𝐦𝐨𝐝 𝝋 𝑵

= (𝟎, 𝒄𝟏)
= (𝟎, 𝒄)

Observe: this also shows that every 𝑵th residue 𝒚 has
exactly 𝑵 roots 𝑵 𝒚.

this is possible
because
𝑵 ⊥ 𝝋(𝑵)

[exercise]

The 𝑵th residues pictorially

𝒁
𝑵𝟐
∗

𝟏

𝟎

𝑵 − 𝟏

𝑵 − 𝟏

𝒁𝑵
∗

𝒁𝑵

...

. . .

𝑵th residues. Denote this set 𝐑𝐞𝐬 𝑵𝟐

Also
The 𝑵th roots of every (𝟎, 𝒄) have a form (𝒂, 𝒄𝒅):

𝒁
𝑵𝟐
∗

𝟏

𝟎

𝑵 − 𝟏

𝑵 − 𝟏

𝒁𝑵
∗

𝒁𝑵

...

. . .

all 𝑵th
roots of the
same 𝑵th

residue

Corollary

It’s easy to choose a random 𝑵th residue:

Just take a random element 𝒙 ← 𝒁
𝑵𝟐
∗ and compute

𝒚 = 𝒙𝑵 𝐦𝐨𝐝 𝑵𝟐.

Which problem is hard 𝒁
𝑵𝟐
∗ (if one doesn’t know

𝒑 and 𝒒)?

Decisional composite
residuosity (DCR) assumption

Informally:

It is hard to distinguish random element of 𝐑𝐞𝐬 𝑵𝟐

from a random element of 𝒁
𝑵𝟐
∗ .

𝒁
𝑵𝟐
∗

𝒁
𝑵𝟐
∗

?

How to encrypt?

Main idea: messages are elements 𝒙 ↔ 𝒂, 𝟏 (for 𝒂 ∈ 𝒁𝑵)

𝒁
𝑵𝟐
∗

To encrypt a message 𝒎 multiply it by a random 𝒓 ← 𝐑𝐞𝐬(𝑵𝟐):

𝐄𝐧𝐜𝑵 𝒎 = 𝒎 ⋅ 𝒓

Pictorially

𝒁
𝑵𝟐
∗

message 𝒎

ciphertexts of 𝒎

Two questions

1. Is this secure?

2. How to decrypt?

Security follows from the DCR
assumption

𝐄𝐧𝐜𝑵 𝒎 = 𝒎 ⋅ 𝒓 where 𝒓 ← 𝐑𝐞𝐬(𝑵𝟐)

Proof (sketch):
Take the original scheme

and modify it as follows:

𝐄𝐧𝐜𝑵 𝒎 = 𝒎 ⋅ 𝒓 where 𝒓 ← 𝒁
𝑵𝟐
∗

Easy to see:
1. the modified scheme hides the message completely (it’s a

“generalized one-time pad”)
2. if these two schemes can be distinguished then the DCR

assumption is broken.

How to decrypt?

Let’s view encryption as a function in 𝒁𝑵 × 𝒁𝑵
∗ :

𝐄𝐧𝐜𝑵 𝒂, 𝟏 ↔ 𝒂 + 𝟎, 𝟏 ⋅ 𝒃 where 𝒃 ← 𝒁𝑵
∗

= 𝒂, 𝒃

𝐄𝐧𝐜𝑵 𝒎 = 𝒎 ⋅ 𝒓 where
𝒓 ← 𝐑𝐞𝐬(𝑵𝟐)

Problem:
the receiver can only see 𝒇(𝒂, 𝒃).
How can he “extract” 𝒂 from it?

Observation

𝒇 𝒂, 𝒃
𝝋(𝑵)

𝐦𝐨𝐝 𝑵𝟐 ↔ (𝝋 𝑵 ⋅ 𝒂𝐦𝐨𝐝 𝑵, 𝒃𝝋 𝑵 𝐦𝐨𝐝 𝑵)

= (𝝋 𝑵 ⋅ 𝒂𝐦𝐨𝐝 𝑵, 𝟏)

↔ 𝒇 𝝋 𝑵 ⋅ 𝒂𝐦𝐨𝐝 𝑵, 𝟏

= 𝟏 + 𝑵 𝝋 𝑵 ⋅𝒂 𝐦𝐨𝐝 𝑵 ⋅ 𝟏𝒏 𝐦𝐨𝐝 𝑵𝟐

= 𝟏 +𝑵 𝝋 𝑵 ⋅𝒂 𝐦𝐨𝐝 𝑵 𝐦𝐨𝐝 𝑵𝟐

= 𝟏 + (𝝋 𝑵 ⋅ 𝒂𝐦𝐨𝐝 𝑵) ⋅ 𝑵𝐦𝐨𝐝 𝑵𝟐

< 𝑵𝟐

= 𝟏 + (𝝋 𝑵 ⋅ 𝒂𝐦𝐨𝐝 𝑵) ⋅ 𝑵

So:

𝝋 𝑵 ⋅ 𝒂𝐦𝐨𝐝 𝑵 =
𝒇 𝒂, 𝒃

𝝋(𝑵)
𝐦𝐨𝐝𝑵𝟐 − 𝟏

𝑵

here we use the fact
that

𝟏 + 𝑵 𝒂

= 𝟏 + 𝒂 ⋅ 𝑵 𝐦𝐨𝐝 𝑵𝟐

Continued:

We got that

𝝋 𝑵 ⋅ 𝒂𝐦𝐨𝐝 𝑵 =
𝒇 𝒂, 𝒃

𝝋(𝑵)
𝐦𝐨𝐝 𝑵𝟐 − 𝟏

𝑵
Therefore

𝒂 = 𝒛 ⋅ 𝝋 𝑵
−𝟏

𝐦𝐨𝐝 𝑵

denote it 𝒛

Paillier encryption

Key generation: let 𝑵 ≔ 𝒑𝒒 like in RSA
public key: 𝑵
private key: (𝒑, 𝒒)

Encryption:
𝐄𝐧𝐜𝑵 𝒎 = 𝟏 +𝑵 𝒎 ⋅ 𝒓𝑵 𝐦𝐨𝐝 𝑵𝟐 where 𝒓 ← 𝒁𝑵

∗

Decryption:

𝐃𝐞𝐜𝒑,𝒒 𝒄 =
(𝒄𝝋 𝑵 𝐦𝐨𝐝 𝑵𝟐) −𝟏

𝑵
⋅ 𝝋 𝑵 −𝟏𝐦𝐨𝐝 𝑵

Why is this additively homomorphic?

𝒄 = 𝐄𝐧𝐜𝑵 𝒎 ↔ (𝒎, 𝒓) where 𝒓 ← 𝒁𝑵
∗

𝒄′ = 𝐄𝐧𝐜𝑵 𝒎′ ↔ 𝒎′, 𝒓′ where 𝒓′ ← 𝒁𝑵
∗

We have:

𝒄 ⋅ 𝒄′↔ 𝒎, 𝒓 ⋅ (𝒎, 𝒓)
= (𝒎 +𝒎′, 𝒓 ⋅ 𝒓′)

↔ 𝐄𝐧𝐜𝑵 𝒎+𝒎′ with randomness 𝒓 ⋅ 𝒓′

Plan

1. Rabin encryption

2. ElGamal encryption

3. Homomorphic encryption and Paillier
cryptosystem

4. Practical considerations

5. Theoretical overview

ElGamal vs. RSA

In practice RSA and ElGamal (in 𝒁𝒑
∗) have similar

security for equivalent key lengths.

• RSA is slightly more efficient

• ElGamal has a ciphertext twice as long as the
plaintext

• But ElGamal can be generalized to other groups
(e.g. the elliptic curves) where it is much more
efficient!

NIST recommendations

bits of security
RSA modulus

length

discrete log
in order

𝒒 subgroups of
𝒁𝒑
∗

discrete log in
elliptic curves of

order:

≤ 𝟖𝟎 1024
𝒑 = 𝟏𝟎𝟐𝟒
𝒒 = 𝟏𝟔𝟎

160

112 2048
𝒑 = 𝟐𝟎𝟒𝟖
𝒒 = 𝟐𝟐𝟒

224

128 3072
𝒑 = 𝟑𝟎𝟕𝟐
𝒒 = 𝟐𝟓𝟔

256

192 7680
𝒑 = 𝟕𝟔𝟖𝟎
𝒒 = 𝟑𝟖𝟒

384

256 15360
𝒑 = 𝟏𝟓𝟑𝟔𝟎
𝒒 = 𝟓𝟏𝟐

512

[NIST Special Publication 800-57 Part 1 Revision 4 Recommendation for Key
Management]

Quantum attacks

All the schemes presented so far
can be broken by quantum
computers using Shor’s algorithm.

[Peter W. Shor "Polynomial-Time
Algorithms for Prime Factorization
and Discrete Logarithms on a
Quantum Computer“ 1995] Peter Shor

1959—

There exists public-key encryption schemes that are believed
to be secure against quantum computers (see post-quantum
cryptography)

Plan

1. Rabin encryption

2. ElGamal encryption

3. Homomorphic encryption and Paillier
cryptosystem

4. Practical considerations

5. Theoretical overview

A natural question

Is public-key encryption a member of Minicrypt?

Answer: NO (as far as we know).

More precisely: nobody knows how to construct
PKE from one-way functions.

However, the following implication is known:

public-key
encryption exists

trap-door permutations
exist

This is proven using the hardcore predicates.

Hard-core predicates

Hard-core predicates are a generalization of hard-
core bits.

Definition (informal)

𝝅: {𝟎, 𝟏}𝒏 {𝟎, 𝟏} is a hard core predicate for a
trap-door permutation 𝒇: 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}𝒏 if it is
hard to guess 𝝅(𝒇−𝟏(𝒚)) from 𝒚
(with probability significantly better than 𝟏/𝟐).

A fact
Does every trap-door permutation have a hard-
core predicate?

Almost:

Suppose that 𝒇 is a trap-door permutation.

It can be used to build a trap-door permutation 𝒈
that has a hard-core predicate.

How to encrypt with such an 𝒈?

Encryption for messages of length 𝟏:

public key: description of 𝒈

private key: trapdoor 𝒕 for 𝒈

𝐄𝐧𝐜𝒈 𝒃 = (𝝅 𝒙 ⊕ 𝒃,𝒈 𝒙)

where 𝒙 ∈ 𝒁𝑵
∗ is random.

𝐃𝐞𝐜𝒕 𝒃
′, 𝒚 = 𝝅 𝒈−𝟏 𝒚 ⊕ 𝒃

The general picture

public-key
encryption exists

trap-door permutations
exist

one way functions
existminicrypt

cryptomania

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or
all of this material is currently granted without fee provided that copies are made
only for personal or classroom use, are not distributed for profit or commercial
advantage, and that new copies bear this notice and the full citation.

