Lecture 9

Public-Key Encryption II

Stefan Dziembowski

www.crypto.edu.pl/Dziembowski

University of Warsaw

Plan

1. Rabin encryption
2. ElGamal encryption
3. Homomorphic encryption and Paillier cryptosystem
4. Practical considerations
5. Theoretical overview

The situation

RSA assumption holds

public-key encryption exists

Rabin encrypion

- introduced by Michael O. Rabin in 1979
- based on squaring in Z_{N}^{*}
- security equivalent to factoring

On previous lectures we proven the following

Fact

Let N be a random RSA modulus.
The problem of computing square roots (modulo N) of random elements in $\mathbf{Q R}_{N}$ is poly-time equivalent to the problem of factoring N.

one can compute
 square roots modulo N

In other words

"squaring in Z_{N}^{*} " is a one-way function (assuming the factoring RSA moduli is hard).

Define:

$$
\text { Rabin: } Z_{N}^{*} \rightarrow Z_{N}^{*}
$$

as

$$
\operatorname{Rabin}(x):=x^{2} \bmod N
$$

A fact about squaring modulo $N=p q$?

$$
Z_{N}^{*} \quad \operatorname{Rabin}_{N}(x)=x^{2} \bmod N Z_{N}^{*}
$$

This function "glues" 4 elements together.

Example for $N=15$

Z_{15}^{*}

	1	1	2		4			7	8			11		13

How to base encryption on this?

Idea:

public key: $N=p q$
private key: (p, q)
can be computed efficiently if one knows \boldsymbol{p} and q (see Lecture 7)
encryption: $\operatorname{Enc}_{N}(x)=x^{2} \bmod N$
decryption: $\operatorname{Dec}_{(p, q)}(y)=\sqrt{y} \bmod N$

Problem: there are 4 square roots.

Solution: "make the inversion unique".

How to do it?

An ad-hoc method: add an encoding (like in the "real RSA encryption").
In such a way that only 1 out of the 4 square roots "make sense".

$$
Z_{N}^{*} \quad Z_{N}^{*}
$$

In other words: make the set of legal messages is "sparse"

Another approach

Fact

Such an N is called a "Blum integer"

Suppose $N=p q$ where

$$
p=q=3(\bmod 4)
$$

Then the function
$\operatorname{Rabin}_{N}(x)=x^{2} \bmod N$
is a permutation when restricted to $\mathbf{Q R}_{N}$ Rabin $_{N}: \mathbf{Q R}_{N} \rightarrow \mathbf{Q R} \mathbf{N}_{N}$

How does it look?

Rabin restricted to $\mathbf{Q R}_{N}$ is a permutation

Proof that $\operatorname{Rabin}_{N}(x)=x^{2} \bmod N$ restricted to QR_{N} is a permutation

$$
(N=p q \text {, where } p=q=3 \bmod 4)
$$

We prove that Rabin is injective, i.e. for every $x, y \in \mathbf{Q R}_{N}$ we have that

$$
x^{2}=y^{2} \Rightarrow x=y
$$

Observation: by CRT it is enough to show that

- $x^{2}=y^{2} \Rightarrow x=y \bmod p$ and
- $x^{2}=y^{2} \Rightarrow x=y \bmod q$.

By symmetry it's also enough to show it just for p.

Proof

Suppose we have $\boldsymbol{x}, \boldsymbol{y} \in \mathrm{QR}_{\mathrm{N}}$ such that $x^{2}=y^{2} \bmod N$

Let $\boldsymbol{p}=4 \boldsymbol{k}+3$, where $\boldsymbol{k} \in \mathbf{N}$

Let $\boldsymbol{i}, \boldsymbol{j} \in \mathbf{N}$ be such that

- $x=g^{2 i} \bmod p$ and
- $y=g^{2 j} \bmod p$
where g is a generator of Z_{p}^{*} and

$$
\begin{aligned}
0 \leq j \leq i & <\frac{p-1}{2} \\
& =\frac{4 k+2}{2} \\
& =2 k+1
\end{aligned}
$$

$$
x^{2}=y^{2} \bmod p
$$

$$
g^{4 i}=g^{4 j} \bmod p
$$

$$
g^{4(i-j)}=1 \bmod p
$$

$$
p-1 \mid 4(i-j)
$$

$$
4 k+2 \mid 4(i-j)
$$

$2 k+1 \mid 2(i-j)$

$$
2 k+1 \mid i-j
$$

$$
i=j
$$

$x=y \bmod p$

How to encrypt a one-bit message b ?

Fact: the least significant bit is a hard-core bit for the

 Rabin permutation.
a Blum integer

N - public key
(p, q) - private key

$$
\begin{aligned}
\operatorname{Enc}_{N}(b)=(\operatorname{LSB}(x) \oplus b & \left.\boldsymbol{b}, \operatorname{Rabin}_{N}(x)\right), \\
& \text { where } x \in \mathbf{Q R}_{N} \text { is random. }
\end{aligned}
$$

this can be computed if one knows p and q

$$
\operatorname{Dec}_{p, q}\left(b^{\prime}, y\right)=\operatorname{LSB}\left(\operatorname{Rabin}_{N}^{-1}(y)\right) \oplus b^{\prime}
$$

Moral

factoring RSA moduli is hard

public-key encryption exists

Plan

1. Rabin encryption
2. ElGamal encryption
3. a tool: Diffie-Hellman key exchange
4. ElGamal encryption
5. Homomorphic encryption and Paillier cryptosystem
6. Practical considerations
7. Theoretical overview

Remember the exponentiation modulo a prime?

x	$2^{x} \bmod 11$
0	1
1	2
2	4
3	8
4	5
5	10
6	9
7	7
8	3
9	6

2 is a generator of \mathbf{Z}_{11}^{*}

Discrete log

x	g^{x}
$\mathbf{0}$	$\mathbf{1}$
$\mathbf{1}$	2
2	4
3	8
4	5
5	10
6	9
7	7
$\mathbf{8}$	3
9	6

Function

$$
f(x)=g^{x} \bmod p
$$

easy to compute

believed to be hard to
compute for large p

Discrete log is hard in many other groups!

How to construct PKE based on the hardness of discrete log?

RSA was a trapdoor permutation, so the construction was quite easy...

In case of the discrete log, we just have a one-way function.

Diffie and Hellman constructed something weaker than PKE: a key exchange protocol (also called key agreement protocol).

We'll not describe it. Then, we'll show how to "convert it" into a PKE.

Plan

1. Rabin encryption
2. ElGamal encryption
3. a tool: Diffie-Hellman key exchange
4. ElGamal encryption
5. Homomorphic encryption and Paillier cryptosystem
6. Practical considerations
7. Theoretical overview

Key exchange

initially they share no secret

Eve should have no information about \boldsymbol{k}

We will formalize it later.
Let's first show the protocol.

The Diffie-Hellman Key exchange

- G - a group, where discrete \log is believed to be hard
- $q:=|G|$
- g - a generator of G

output:
$\boldsymbol{k}_{\boldsymbol{A}}=\left(\boldsymbol{h}_{2}\right)^{x}$
output:

$$
k_{B}=\left(h_{1}\right)^{y}
$$

equal to:
$g^{x y}$

Security of the Diffie-Hellman key exchange

Eve should have no information about $g^{y x}$.

Is it secure?

If the discrete \log in G is easy then the DH key exchange is not secure.
(because the adversary can compute x and y from g^{x} and g^{y})

If the discrete \log in G is hard, then...
it may also not be secure

Example for $G=Z_{p}^{*}$

We use the facts that:

- quadratic residues in Z_{p}^{*} are even powers of the generator, and
- testing membership in $\mathbf{Q R}_{p}$ is computationally easy (even for large p).

Suppose $G=Z_{p}^{*}$

x is even iff $\boldsymbol{h}_{\boldsymbol{1}} \in \mathbf{Q} \mathbf{R}_{\boldsymbol{p}}$

$$
y \text { is even iff } \boldsymbol{h}_{2} \in \mathbf{Q} \mathbf{R}_{p}
$$

Therefore:

$$
g^{x y} \in \mathbf{Q R}_{p} \text { iff }\left(h_{1} \in \mathbf{Q R}_{p} \text { or } h_{2} \in \mathbf{Q} \mathbf{R}_{p}\right)
$$

So, Eve can compute some information about $\boldsymbol{g}^{x y}$ (namely: if it is a $\mathbf{Q R}$, or not).

Solution (see previous lectures)

Instead of working in Z_{p}^{*} work in its subgroup: $\mathbf{Q R}_{p}$
How to find a generator of $\mathbf{Q R} \mathbf{R}_{p}$?
A practical method: Choose p that is a strong prime, which means that:

$$
p=2 \cdot q+1, \text { with } q \text { prime. }
$$

Hence: $\mathbf{Q R}_{p}$ has a prime order (q).
Every element (except of 1) of a group of a prime order is its generator!
Therefore: every element of $\mathbf{Q R}_{p}$ is a generator.

The DH Key exchange over QR group

 Take a prime $p=2 \cdot q+1$, with q prime. Take any $\boldsymbol{h} \in Z_{p}$ such that $\boldsymbol{h} \neq \pm \mathbf{1}$ and let $g=h^{2} \bmod p$.

But is the partial information leakage really a problem?

We need to

1. formalize what we mean by secure key exchange,
2. identify the assumptions needed to prove the security.

Informal definition:

(A, B) is secure if no "efficient adversary" can distinguish k from random, given T, with a "non-negligible advantage".

How to formalize it?

We say $(\boldsymbol{A}, \boldsymbol{B})$ is secure a secure key-exchange protocol if: the output of A and B is always the same, and
$\nabla\left|P\left(M\left(1^{n}, T, k\right)=1\right)-P\left(M\left(1^{n}, T, r\right)=1\right)\right| \leq \operatorname{negl}(n)$ poly-time

How to make G dependent on $\mathbb{1}^{\boldsymbol{n}}$?

In practice often a fixed group is used.

In theory we need to have a new group G for every value of $\mathbf{1}^{n}$.

So, we need to define an algorithm that generates G and its generator g.

Group generating algorithm GenG

Example of GenG

How does the protocol look now?

If such a key exchange protocol is secure, we say that: the Decisional Diffie-Hellman (DDH) problem is hard with respect to GenG)

Formally

Decisional Diffie-Hellman (DDH) problem is hard relative to GenG if for every poly-time algorithm A we have that

$$
\begin{aligned}
& \mid P\left(A\left(G, q, g, g^{x}, g^{y}, g^{z}\right)=\right.1)-P\left(A\left(G, q, g, g^{x}, g^{y}, g^{x y}\right)=1\right) \mid \\
& \leq \operatorname{negl}(n)
\end{aligned}
$$

where

$$
(G, q, g) \leftarrow \operatorname{GenG}\left(1^{n}\right)
$$

and

$$
x, y, z \leftarrow z_{q}
$$

Examples

DDH is believed to be hard relative to $\operatorname{GenG}_{\mathrm{QR}}$

Other examples: elliptic curves

How does DDH compare to the discrete log assumption

DDH is hard relative to GenG

The opposite implication is unknown in most of the cases

A problem

The protocols that we discussed are secure only against a passive adversary
(that only eavesdrop).

What if the adversary is active?

She can launch a "man-in-the-middle attack".

Man in the middle attack

A very realistic attack!
So, is this thing totally useless?
No! (it is useful as a building block)

Plan

1. Rabin encryption
2. ElGamal encryption
3. tool: Diffie-Hellman key exchange
4. ElGamal encryption
5. Homomorphic encryption and Paillier cryptosystem
6. Practical considerations
7. Theoretical overview

ElGamal encryption

ElGamal is another popular public-key encryption scheme.

Introduced in:
[Taher ElGamal "A Public key
Cryptosystem and A Signature
Scheme based on discrete
Logarithms". IEEE Transactions on Information Theory. 1985]

Taher ElGamal (1955-)

It is based on the Diffie-Hellman key-exchange.

First observation

Remember that the one-time pad scheme can be generalized to any group G ?

$$
\begin{aligned}
\mathcal{K}=\mathcal{M}= & C=G \\
& \operatorname{Enc}(\boldsymbol{k}, \boldsymbol{m})=\boldsymbol{m} \cdot \boldsymbol{k} \\
& \operatorname{Dec}(\boldsymbol{k}, \boldsymbol{m})=\boldsymbol{m} \cdot \boldsymbol{k}^{-1}
\end{aligned}
$$

So, if k is the key agreed in the DH key exchange, then Alice can send a message $M \in G$ to Bob "encrypting it with \boldsymbol{k} " by setting: $c:=m \cdot k$

Note: this is essentially the KEM/DEM method from Lecture 8.

How does it look now?

The last two messages can be sent together

ElGamal encryption

key generation

ElGamal encryption

Let GenG be such that DDH is hard with respect to GenG.
$\operatorname{Gen}\left(\mathbb{1}^{n}\right)$ first runs GenG to obtain $\boldsymbol{G}, \boldsymbol{g}$ and \boldsymbol{q}. Then, it chooses $x \leftarrow Z_{q}$ and computes $h_{1}:=g^{x}$.

The public key is ($\boldsymbol{G}, \boldsymbol{g}, \boldsymbol{q}, \boldsymbol{h}_{\mathbf{1}}$).
The private key is ($\boldsymbol{G}, \boldsymbol{g}, \boldsymbol{q}, \boldsymbol{x}$).

$$
\begin{array}{r}
\operatorname{Enc}\left(\left(\boldsymbol{G}, \boldsymbol{g}, \boldsymbol{q}, \boldsymbol{h}_{1}\right), \boldsymbol{m}\right):=\left(\boldsymbol{m} \cdot \boldsymbol{h}_{1}^{y}, \boldsymbol{g}^{y}\right), \\
\text { where } \boldsymbol{m} \in \boldsymbol{G} \text { and } \boldsymbol{y} \text { is a random element of } \boldsymbol{G} \\
\text { (note: it is randomized by definition) }
\end{array}
$$

$$
\operatorname{Dec}\left((G, g, q, x),\left(c_{1}, h_{2}\right)\right):=c_{1} \cdot h_{2}^{-x}
$$

Correctness

$h=\boldsymbol{g}^{\boldsymbol{x}}$

$\operatorname{Enc}((\boldsymbol{G}, \boldsymbol{g}, \boldsymbol{q}, \boldsymbol{h}), \boldsymbol{m})=\left(\boldsymbol{m} \cdot \boldsymbol{h}^{y}, \boldsymbol{g}^{y}\right)$
$\operatorname{Dec}\left((G, g, q, x),\left(c_{1}, h_{2}\right)\right)=c_{1} \cdot h_{2}^{-x}$

$$
\begin{aligned}
& =\boldsymbol{m} \cdot \boldsymbol{h}^{y} \cdot\left(g^{y}\right)^{-x} \\
& =m \cdot\left(g^{x}\right)^{y} \cdot\left(g^{y}\right)^{-x} \\
& =m \cdot g^{x y} \cdot g^{-y x} \\
& =m
\end{aligned}
$$

ElGamal - implementation issues

Which group to choose?
E.g.: $\mathbf{Q R}_{p}$, where p is a strong prime, i.e.: $\boldsymbol{q}=\frac{p-1}{2}$ is also prime.

Plaintext space is a set of integers $\{\mathbf{1}, \ldots, \boldsymbol{q}\}$.
How to map an integer $\boldsymbol{i} \in\{\mathbf{1}, \ldots, \boldsymbol{q}\}$ to $\mathbf{Q R} \mathbf{R}_{p}$?
Just square:

$$
f(i)=i^{2} \bmod p
$$

Why is it one-to-one?

Remember this picture (from previous lectures)?

The mapping

So

$$
f(i)=i^{2} \bmod p
$$

is one-to-one (on $\{\mathbf{1}, \ldots, \boldsymbol{q}\}$).

Is it also efficiently invertible?
Yes (this was discussed on Lecture 7)

Plan

1. Rabin encryption
2. ElGamal encryption
3. Homomorphic encryption and Paillier cryptosystem
4. Practical considerations
5. Theoretical overview

ElGamal has an interesting property

homomorphism with respect to multiplication:
A "product of two ciphertexts" decrypts to a product of their corresponding messages.

Why?

- public key: $(\boldsymbol{G}, \boldsymbol{g}, \boldsymbol{q}, \boldsymbol{h})$
- private key: (G, g, q, x)
$c:=\operatorname{Enc}((\boldsymbol{G}, \boldsymbol{g}, \boldsymbol{q}, \boldsymbol{h}), \boldsymbol{m}):=\left(\boldsymbol{m} \cdot \boldsymbol{h}^{y}, \boldsymbol{g}^{y}\right)$, where $\boldsymbol{y} \leftarrow \boldsymbol{G}$
$c^{\prime}:=\operatorname{Enc}\left((\boldsymbol{G}, \boldsymbol{g}, \boldsymbol{q}, \boldsymbol{h}), \boldsymbol{m}^{\prime}\right):=\left(\boldsymbol{m}^{\prime} \cdot \boldsymbol{h}^{y^{\prime}}, \boldsymbol{g}^{y^{\prime}}\right)$, where $\boldsymbol{y}^{\prime} \leftarrow \boldsymbol{G}$
product of c and c^{\prime} :

$$
\begin{aligned}
& \left(\boldsymbol{m} \cdot \boldsymbol{m}^{\prime} \cdot \boldsymbol{h}^{y} \cdot \boldsymbol{h}^{y^{\prime}}, \boldsymbol{g}^{y} \cdot \boldsymbol{g}^{y \prime}\right) \\
& =\left(\boldsymbol{m} \cdot \boldsymbol{m}^{\prime} \cdot \boldsymbol{h}^{y+y^{\prime}}, \boldsymbol{g}^{y+y^{\prime}}\right)
\end{aligned}
$$

this is an encryption of m. m^{\prime} with randomness $y+y^{\prime}$

Homomorphism - good or bad?

Sometimes homomorphism is a security weakness (think of the CCA security).

On the other hand: it can also be a plus.

One example: cloud computing

Example: outsourcing computation

Observe: the server doesn't learn the $x_{i}{ }^{\text {'s }}$!

This can be generalized!

The example on the previous slide was a bit artificial. But think about the following.

$$
\begin{aligned}
& \text { has some data } x_{1}, \ldots, x_{n} \text { and wants to learn } \\
& \qquad x=f\left(x_{1}, \ldots, x_{n}\right) \text { for some function } f
\end{aligned}
$$

Fully homomorphic encryption (FHE)

Constructing encryption scheme that would allow "homomorphic computation" of any function f was an open problem until 2009.

The first such construction was given in:
Craig Gentry. Fully Homomorphic Encryption Using
Ideal Lattices. ACM Symposium on Theory of Computing (STOC), 2009.

Working towards construction of practical FHE is an active research area.

A natural (but much simpler) question

Can we construct an encryption scheme that is homomorphic with respect to addition?

Answer: Yes, Paillier cryptosystem
[Pascal Paillier "Public-Key Cryptosystems Based on Composite Degree Residuosity Classes". EUROCRYPT 1999]

Paillier cryptosystem works over $Z_{N^{2}}^{*}$, where N is an RSA modulus

Let $N:=p q$.
public key: N
private key: (p, q)

How does $Z_{N^{2}}^{*}$ look like?
Observe:

$$
\begin{aligned}
\varphi\left(N^{2}\right) & =p(p-1) \cdot q(q-1) \\
& =p q \cdot(p-1)(q-1) \\
& =N \cdot \varphi(N)
\end{aligned}
$$

Fact

$Z_{N^{2}}^{*}$ is isomorphic to $Z_{N} \times Z_{N}^{*}$ with the following isomorphism

$$
\begin{gathered}
f: Z_{N} \times Z_{N}^{*} \rightarrow Z_{N^{2}}^{*} \\
f(a, b)=(1+N)^{a} \cdot b^{N} \bmod N^{2}
\end{gathered}
$$

If $\boldsymbol{x}=\boldsymbol{f}(\boldsymbol{a}, \boldsymbol{b})$ then we will
[proof: exercise] also write: $\boldsymbol{x} \leftrightarrow(\boldsymbol{a}, \boldsymbol{b})$

Another fact

Fact: for any integer a we have that

$$
(1+N)^{a}=1+a \cdot N\left(\bmod N^{2}\right)
$$

Proof:

$$
\begin{aligned}
(1+N)^{a} & =1+\binom{a}{1} N^{1}+\binom{a}{2} N^{2}+\cdots+\binom{a}{1} N^{a} \\
& =1+\binom{a}{1} N\left(\bmod N^{2}\right) \\
& =1+a \cdot N\left(\bmod N^{2}\right)
\end{aligned}
$$

A consequence of this fact

Fact: for any integer a we have that

$$
(1+N)^{a}=1+a \cdot N\left(\bmod N^{2}\right)
$$

Consequence: order of $1+N$ in $Z_{N^{2}}^{*}$ is N.

why?

because:

- for $0<a<N$ we have $1<1+a \cdot N<N^{2}$
- and $1+N \cdot N=1\left(\bmod N^{2}\right)$

Structure of $\boldsymbol{Z}_{N^{2}}^{*}$

$$
Z_{N^{2}}^{*} \cong \overbrace{N_{0}}^{Z_{N}} \underbrace{}_{N-1}
$$

Multiplication in $Z_{N^{2}}^{*}$

N th residues in $Z_{N^{2}}^{*}$

A number $y \in Z_{N^{2}}^{*}$ is called an N th residue modulo N^{2} if there exists $x \in Z_{N^{2}}^{*}$ such that

$$
y=x^{N} \bmod N^{2}
$$

How do the N th residues look like?

A form of every N th residue

Suppose $x \leftrightarrow(a, b)$.
Then

$$
\begin{aligned}
x^{N} & \leftrightarrow\left(N \cdot a \bmod N, b^{N} \bmod N\right) \\
& =\left(0, b^{N} \bmod N\right)
\end{aligned}
$$

So every N th residue is of a form

$$
y \leftrightarrow(0, c)
$$

Is every element of this form an N th residue?

A proof that every element $(0, c)$ is an N th residue
this is possible
Take $y \leftrightarrow(0, c)$. Let $d=N^{-1} \bmod \varphi(N)$. because
$N \perp \varphi(N)$
For an arbitrary $a \in Z_{N}$ let x be such that

$$
x \leftrightarrow\left(a, c^{d}\right)
$$

[exercise]
We have:

$$
\begin{aligned}
x^{N} & \leftrightarrow\left(N a \bmod N, c^{d N} \bmod N\right) \\
& =\left(0, c^{d N \bmod \varphi(N)}\right) \\
& =\left(0, c^{\mathbf{1}}\right) \\
& =(0, c)
\end{aligned}
$$

Observe: this also shows that every N th residue y has exactly N roots $\sqrt[N]{y}$.

The N th residues pictorially

Also

The N th roots of every $(\mathbf{0}, \boldsymbol{c})$ have a form $\left(\boldsymbol{a}, \boldsymbol{c}^{\boldsymbol{d}}\right)$:

Corollary

It's easy to choose a random N th residue:

Just take a random element $x \leftarrow Z_{N^{2}}^{*}$ and compute $y=x^{N} \bmod N^{2}$.

Which problem is hard $Z_{N^{2}}^{*}$ (if one doesn't know p and q ?

Decisional composite residuosity (DCR) assumption

Informally:

It is hard to distinguish random element of $\operatorname{Res}\left(N^{2}\right)$ from a random element of $Z_{N^{2}}^{*}$.

How to encrypt?

Main idea: messages are elements $\boldsymbol{x} \leftrightarrow(\boldsymbol{a}, \mathbf{1})$ (for $a \in Z_{N}$)

To encrypt a message m multiply it by a random $r \leftarrow \operatorname{Res}\left(N^{2}\right)$:

$$
\operatorname{Enc}_{N}(\boldsymbol{m})=\boldsymbol{m} \cdot \boldsymbol{r}
$$

Pictorially

ciphertexts of m

Two questions

1. Is this secure?
2. How to decrypt?

Security follows from the DCR assumption

Proof (sketch):
Take the original scheme

$$
\operatorname{Enc}_{N}(m)=m \cdot r \text { where } r \leftarrow \operatorname{Res}\left(N^{2}\right)
$$

and modify it as follows:

$$
\operatorname{Enc}_{N}(m)=m \cdot r \text { where } r \leftarrow Z_{N^{2}}^{*}
$$

Easy to see:

1. the modified scheme hides the message completely (it's a "generalized one-time pad")
2. if these two schemes can be distinguished then the DCR assumption is broken.

How to decrypt?

Let's view encryption as a function in $Z_{N} \times Z_{N}^{*}$:
$\operatorname{Enc}_{N}(\boldsymbol{a}, 1) \leftrightarrow(\boldsymbol{a}+\mathbf{0}, \mathbf{1} \cdot \boldsymbol{b})$ where $\boldsymbol{b} \leftarrow Z_{N}^{*}$
$=(a, b)$

Problem:

the receiver can only see $f(\boldsymbol{a}, \boldsymbol{b})$. How can he "extract" a from it?

Observation

$(f(a, b))^{\varphi(N)} \bmod N^{2} \leftrightarrow\left(\varphi(N) \cdot a \bmod N, b^{\varphi(N)} \bmod N\right)$
here we use the fact that
$(1+N)^{a}$
$=1+a \cdot N\left(\bmod N^{2}\right)$

$$
\begin{aligned}
& =(\varphi(N) \cdot a \bmod N, \mathbf{1}) \\
& \leftrightarrow f(\varphi(N) \cdot a \bmod N, \mathbf{1}) \\
& =(1+N)^{\varphi(N) \cdot a \bmod N} \cdot \mathbf{1}^{n} \bmod N^{2} \\
& =(1+N)^{\varphi(N) \cdot a \bmod N} \bmod N^{2} \\
& =\underbrace{1+(\varphi(N) \cdot a \bmod N) \cdot N}_{<N^{2}} \bmod N^{2} \\
& =1+(\varphi(N) \cdot a \bmod N) \cdot N
\end{aligned}
$$

So:

$$
\varphi(N) \cdot a \bmod N=\frac{(f(a, b))^{\varphi(N)} \bmod N^{2}-1}{N}
$$

Continued:

> denote it z

We got that
$\varphi(N) \cdot a \bmod N=\frac{(f(a, b))^{\varphi(N)} \bmod N^{2}-1}{N}$
Therefore

$$
a=z \cdot(\varphi(N))^{-1} \bmod N
$$

Paillier encryption

Key generation: let $N:=p q$ like in RSA
public key: N
private key: (p, q)

Encryption:

$\operatorname{Enc}_{N}(\boldsymbol{m})=(1+N)^{m} \cdot r^{N} \bmod N^{2}$ where $r \leftarrow Z_{N}^{*}$

Decryption:

$$
\operatorname{Dec}_{p, q}(c)=\frac{\left(c^{\varphi(N)} \bmod N^{2}\right)-1}{N} \cdot \varphi(N)^{-1} \bmod N
$$

Why is this additively homomorphic?

$c=\operatorname{Enc}_{N}(\boldsymbol{m}) \leftrightarrow(\boldsymbol{m}, \boldsymbol{r})$ where $r \leftarrow \mathbb{Z}_{N}^{*}$
$c^{\prime}=\operatorname{Enc}_{N}\left(\boldsymbol{m}^{\prime}\right) \leftrightarrow\left(\boldsymbol{m}^{\prime}, \boldsymbol{r}^{\prime}\right)$ where $\boldsymbol{r}^{\prime} \leftarrow \mathbb{Z}_{N}^{*}$

We have:

$$
\begin{aligned}
\boldsymbol{c} \cdot \boldsymbol{c}^{\prime} & \leftrightarrow(\boldsymbol{m}, \boldsymbol{r}) \cdot(\boldsymbol{m}, \boldsymbol{r}) \\
& =\left(\boldsymbol{m}+\boldsymbol{m}^{\prime}, \boldsymbol{r} \cdot \boldsymbol{r}^{\prime}\right) \\
& \leftrightarrow \operatorname{Enc}_{\boldsymbol{N}}\left(\boldsymbol{m}+\boldsymbol{m}^{\prime}\right) \text { with randomness } \boldsymbol{r} \cdot \boldsymbol{r}^{\prime}
\end{aligned}
$$

Plan

1. Rabin encryption
2. ElGamal encryption
3. Homomorphic encryption and Paillier cryptosystem
4. Practical considerations
5. Theoretical overview

ElGamal vs. RSA

In practice RSA and ElGamal (in Z_{p}^{*}) have similar security for equivalent key lengths.

- RSA is slightly more efficient
- ElGamal has a ciphertext twice as long as the plaintext
- But ElGamal can be generalized to other groups (e.g. the elliptic curves) where it is much more efficient!

NIST recommendations

bits of security	RSA modulus length	discrete log in order q subgroups of Z_{p}^{*}	discrete log in elliptic curves of order:
≤ 80	1024	$\|p\|=1024$ $\|q\|=160$	160
112	2048	$\|p\|=2048$ $\|q\|=224$	224
128	3072	$\|p\|=3072$ $\|q\|=256$	256
192	7680	$\|p\|=7680$ $\|q\|=384$	384
256	15360	$\|p\|=15360$ $\|q\|=512$	

[NIST Special Publication 800-57 Part 1 Revision 4 Recommendation for Key Management]

Quantum attacks

All the schemes presented so far can be broken by quantum computers using Shor's algorithm.
> [Peter W. Shor "Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer" 1995]

There exists public-key encryption schemes that are believed to be secure against quantum computers (see post-quantum cryptography)

Plan

1. Rabin encryption
2. ElGamal encryption
3. Homomorphic encryption and Paillier cryptosystem
4. Practical considerations
5. Theoretical overview

A natural question

Is public-key encryption a member of Minicrypt? Answer: NO (as far as we know).
More precisely: nobody knows how to construct PKE from one-way functions.
However, the following implication is known:

```
public-key encryption exists
```

trap-door permutations exist

This is proven using the hardcore predicates.

Hard-core predicates

Hard-core predicates are a generalization of hardcore bits.

Definition (informal)

$\pi:\{0,1\}^{n} \rightarrow\{0,1\}$ is a hard core predicate for a trap-door permutation $\boldsymbol{f}:\{\mathbf{0}, \mathbf{1}\}^{n} \rightarrow\{\mathbf{0}, \mathbf{1}\}^{n}$ if it is hard to guess $\pi\left(f^{-1}(y)\right)$ from y (with probability significantly better than $1 / 2$).

A fact

Does every trap-door permutation have a hardcore predicate?

Almost:

Suppose that f is a trap-door permutation.

It can be used to build a trap-door permutation g that has a hard-core predicate.

How to encrypt with such an g ?

Encryption for messages of length 1 :
public key: description of g
private key: trapdoor t for g

$$
\operatorname{Enc}_{g}(b)=(\pi(x) \oplus b, g(x))
$$

where $x \in Z_{N}^{*}$ is random.

$$
\operatorname{Dec}_{t}\left(b^{\prime}, y\right)=\pi\left(g^{-1}(y)\right) \oplus b
$$

The general picture

© 2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation.

