
Lecture 1
Introduction to
Cryptography

3.10.18 version 1.0

Stefan Dziembowski
www.crypto.edu.pl/Dziembowski

University of Warsaw

Basic information

• Exam: written exam at the end of the semester (60%) + mid-
term exam (40%). The exams will have 2 parts (theory and
exercises)

• Website available from: http://www.crypto.edu.pl/

• Main handbook: Jonathan Katz and Yehuda Lindell
Introduction to Modern Cryptography

• Other books:
• Doug Stinson Cryptography Theory and Practice, Third Edition
• Shafi Goldwasser and Mihir Bellare Lecture Notes on Cryptography
• Alfred J. Menezes, Paul C. van Oorschot and Scott A.

Vanstone Handbook of Applied Cryptography

http://www.crypto.edu.pl/
http://www.cs.umd.edu/~jkatz/imc.html
http://www.cacr.math.uwaterloo.ca/~dstinson/CTAP3/CTAP3.html
http://www.cs.ucsd.edu/~mihir/papers/gb.html
http://www.cacr.math.uwaterloo.ca/hac/

Plan

1. Introduction

2. Historical ciphers

3. Information-theoretic security

4. Computational security

Historical cryptography

ancient times world war II

cryptography  encryption
main applications: military and diplomacy

Modern cryptography
cryptography = much more

than encryption!

sevenites now

public-key
cryptography

e-cash
electronic voting

indistinguishability obfuscation

multiparty-computations

mental poker

zero-knowledge

key agreement

electronic auctionssignature schemes

What happened in the seventies?

Theory

the
computational

complexity
theory is born

this allows
researchers to
reason about
security in a
formal way.

Technology

affordable
hardware

Demand

companies and
individuals start
to do business
electronically

Cryptography

In the past:

the art of encrypting messages (mostly for the
military applications).

Now:

the science of securing digital communication
and transactions (encryption, authentication,
digital signatures, e-cash, auctions, etc..)

Three components of the
course

1. practical apects

2. mathematical foundations

3. new horizons

Practical aspects

• symmetric encryption: block ciphers (DES, AES)
and tream ciphers (RC4)

• hash functions (MD5, SHA1,…), message
authentication (CBC-MAC)

• public-key infrastructure (X.509, PGP, identity-
based)

• elements of number theory

• asymetric encrypion (RSA, ElGamal, Rabin,...)

• signature schemes (RSA, ElGamal,…)

Mathematical foundations

• What makes us believe that the protocols are
secure?

• Can we formally define “security”?

• Can security be proven?

• Do there exist “unbreakable” ciphers?

New horizons

Advanced cryptographic protocols, such as:

• zero-knowledge

• multiparty computations

• private information retrieval

This course is not about

• practical data security (firewalls, intrusion-
detection, VPNs, etc.),

• history of cryptography,

• number theory and algebra

(we will use them only as tools)

• complexity theory

• cryptocurrencies and blockchain

Terminology

Cryptology = cryptography + cryptanalysis

This convention is slightly artificial and often ignored.

Common usage:

“cryptanalysis of X” = “breaking X”

Common abbreviation: “crypto”

constructing secure
systems

breaking the systems

Cryptography – general picture

encryption authentication

private key private key
encryption

private key
authentication

public key public key
encryption

signatures

advanced cryptographic protocols

1

3

2

4

5

plan of the course:

Preliminary plan of the lectures

1. Introduction to Cryptography

2. Symmetric Encryption I

3. Symmetric Encryption II

4. Symmetric Encryption III

5. Hash Functions and Message Authentication

6. Key Management and Public-Key Cryptography

7. A Brush-up on Number. Theory and Algebra

8. Public-Key Encryption I

9. Public-Key Encryption II

10. Signature Schemes and Commitment Schemes

11. Commitment Schemes and Zero-Knowledge Protocols

12. Two-party and Multi-party Computation Protocols

13. Private Information Retrieval

14. Introduction to Cryptographic Currencies

Encryption schemes
(a very general picture)

Encryption scheme (cipher) = encryption & decryption

encryption ciphertext c decryption mplaintext m

should not learn mIn the past:
a text in natural language.

Now:
a string of bits.

Alice Bob

Art vs. science

In the past:

lack of precise definitions, ad-hoc design, usually
insecure.

Nowadays:

formal definitions, systematic design, very secure
constructions.

We want to construct schemes that are
provably secure.

Provable security

But...

•why do we want to do it?
• how to define it?
• and is it possible to achieve it?

there cannot exist an experimental proof that a scheme is secure.

In many areas of computer science formal proofs are not essential.

For example, instead of proving that an algorithm is efficient,
we can just simulate it on a “typical input”.

Provable security – the motivation

Why?

Because a notion of a

“typical adversary”

does not make sense.

In cryptography it’s not true, because

Security definitions are useful also because they allow us to
construct schemes in a modular way...

Kerckhoffs' principle

20

The only thing that is secret is a

short key k

that is usually chosen uniformly at random

Auguste Kerckhoffs (1883):
The enemy knows the system

The cipher should remain secure
even if the adversary knows the
specification of the cipher.

21

A more refined picture

plaintext 𝒎 encryption ciphertext 𝒄 decryption 𝒎

key k key k

Let us assume that k is unifromly random

(Of course Bob can use the same method to send messages to Alice.)
(That’s why it’s called the symmetric setting)

doesn’t know k
should not learn m

Not respecting this principle
=

``security by obscurity”.

Kerckhoffs' principle – the
motivation

1. In commercial products it is unrealistic to assume
that the design details remain secret (reverse-
engineering!)

2. Short keys are easier to protect, generate and
replaced.

3. The design details can be discussed and analyzed
in public.

A mathematical view
K – key space

M – plaintext space

C - ciphertext space

An encryption scheme is a pair (Enc,Dec), where

 Enc : K × M → C is an encryption algorithm,

 Dec :K × C → M is an decryption algorithm.

We will sometimes write Enck(m) and Deck(c) instead of
Enc(k,m) and Dec(k,c).

Correctness

for every k we should have Deck(Enck(m)) = m.

Plan

1. Introduction

2. Historical ciphers

3. Information-theoretic security

4. Computational security

Shift cipher

M = words over alphabet {A,...,Z} ≈ {0,...,25}

K = {0,...,25}

Enck(m0,...,mn) = (m0 + k mod 26,..., mn + k mod 26)

Deck(c0,...,cn) = (c0 – k mod 26,..., cn – k mod 26)

Caesar: k = 3

Security of the shift cipher

How to break the shift cipher?

Check all possible keys!

Let c be a ciphertext.

For every 𝒌 ∈ {𝟎,… , 𝟐𝟓} check if Deck(c) “makes sense”.

Most probably only one such k exists.

Thus Deck(c) is the message.

This is called a brute force attack.
Moral: the key space needs to be large!

27

Substitution cipher

A B C D E F G H I J K L M N O P R S T U W V X Y Z

A B C D E F G H I J K L M N O P R S T U W V X Y Z

M = words over alphabet {A,...,Z} ≈ {0,...,25}
K = a set of permutations of {0,...,25}

π

Encπ(m0,...,mn) = (π(m0),..., π(mn))

Decπ(c0,...,cn) = (π-1(c0),..., π-1(cn))

28

How to break the substitution
cipher?

Use statistical patterns of the
language.

For example: the frequency
tables.

Texts of 50 characters can usually
be broken this way.

29

Other famous historical ciphers

Vigenère cipher:

Blaise de Vigenère
(1523 - 1596)

Leon Battista Alberti
(1404 – 1472)

Enigma

Marian Rejewski
(1905 - 1980)

Alan Turing
(1912-1954)

Main goals:
1. define security
2. construct schemes that are “provably secure”

In the past ciphers were
designed in an ad-hoc manner

In contemporary cryptography the ciphers are
designed in a systematic way.

Plan

1. Introduction

2. Historical ciphers

3. Information-theoretic security

4. Computational security

Defining “security of an encryption
scheme” is not trivial.

(m – a message)

1. the key K is chosen uniformly at random

2. C := EncK(m) is given to the adversary

consider the following experiment

how to define
security

?

Idea 1

“The adversary should not be able to compute K.”

the encryption scheme that “doesn’t encrypt”:

EncK(m) = m
satisfies this definition!

A problem

An idea

(m – a message)

1. the key K is chosen uniformly at random

2. C := EncK(m) is given to the adversary

Idea 2

“The adversary should not be able to compute m.”

What if the adversary can compute, e.g., the first half of m?

A problem

An idea

m1 ... m|m|/2 ? ... ?

(m – a message)

1. the key K is chosen uniformly at random

2. C := EncK(m) is given to the adversary

Idea 3

“The adversary should not learn any information about m.”

But he may already have some a priori information about m!

For example he may know that m is a sentence in English...

A problem

An idea

(m – a message)

1. the key K is chosen uniformly at random

2. C := EncK(m) is given to the adversary

Idea 4

“The adversary should not learn any additional
information about m.”

This makes much more sense.
But how to formalize it?

An idea

(m – a message)

1. the key K is chosen uniformly at random

2. C := EncK(m) is given to the adversary

Eve knows that

Example

m :=

“I love you” with prob. 0.1

“I don’t love you” with prob. 0.7

“I hate you” with prob. 0.2

m

Eve still knows that

m :=

“I love you” with prob. 0.1

“I don’t love you” with prob. 0.7

“I hate you” with prob. 0.2

m

k
c :=

EncK(m)

How to formalize the “Idea 4”?

An encryption scheme is perfectly secret if

for every random variable M

and every 𝒎 ∈ M and 𝒄 ∈ C

P(M = m) = P(M = m | (Enc(K,M))= c)

“The adversary should not learn any additional
information about m.”

such that
P(C = c) > 0

equivalently: M and Enc(K,M) are independent

also called: information-theoretically secret

Equivalently:

for every M we have that: M and Enc(K,M) are
independent

for every m0 and m1 we have that
Enc(K,m0) and Enc(K,m1)
have the same distribution

“the distribution of Enc(K,m) does not depend on m”

40

A perfectly secret scheme: one-time pad

Gilbert
Vernam

(1890 –1960)

t – a parameter
K = M = {0,1}t

Enck(m) = k xor m
Deck(c) = k xor c

Vernam’s cipher:

component-wise xor

Correctness is trivial:

Deck(Enck(m)) = k xor (k xor m)

m

Perfect secrecy of the one-time pad

Perfect secrecy of the one time pad is also trivial.

This is because for every m
the distribution of Enc(K,m) is uniform

(and hence does not depend on m).

for every c:
P(Enc(K,m) = c) = P(K = m xor c) = 2-t

Observation

One time pad can be generalized as follows.

Let (G,+) be a group. Let K = M = C = G.

The following is a perfectly secret encryption scheme:

• Enc(k,m) = m + k

• Dec(k,m) = m – k

43

Why the one-time pad is not practical?

1. The key has to be as long as the message.

2. The key cannot be reused

This is because:

Enck(m0) xor Enck(m1) = (k xor m0) xor (k xor m1)

= m0 xor m1

Observation: |K| ≥ |C’ |.

Fact: we always have that |C’ | ≥ |M|.

This is because for every k we have that
Enck : M → C’ is an injection

(otherwise we wouldn’t be able to decrypt).
44

Theorem (Shannon 1949)
(“One time-pad is optimal in the class of perfectly secret schemes”)

In every perfectly secret encryption scheme

Enc : K × M → C , Dec :K × C → M

we have |K| ≥ |M|.

Proof

|K| ≥ |M|

Perfect secrecy implies that the distribution of Enc(K,m)
does not depend on m. Hence for every m0 and m1 we have

{Enc(k,m0)}kЄK = {Enc(k,m1)}kЄK denote this set with C’

45

Practicality?
Generally, the one-time pad is not very practical, since:
• the key has to be as long as the total length of the

encrypted messages,
• it is hard to generate truly random strings.

However, it is sometimes used (e.g.
in the military applications),
because of the following
advantages:
• perfect secrecy,
• short messages can be encrypted

using pencil and paper .

In the 1960s the Americans and the Soviets established a
hotline that was encrypted using the one-time
pad.(additional advantage: they didn’t need to share their
secret encryption methods)

a KGB one-time pad hidden
in a walnut shell

46

Venona project (1946 – 1980)

American National Security Agency
decrypted Soviet messages that were
transmitted in the 1940s.

That was possible because the Soviets
reused the keys in the one-time pad
scheme.Ethel and Julius Rosenberg

47

Outlook

We constructed a perfectly secret
encryption scheme

Our scheme has certain drawbacks
(|K| ≥ |M|).

But by Shannon’s theorem this is
unavoidable.

Can we go home and relax?

How?

Classical (computationally-secure) cryptography:
bound his computational power.

Alternative options:
quantum cryptography, bounded-storage model,...

(not too practical)

What to do?

Idea

use a model where the power of
the adversary is limited.

Quantum cryptography

Stephen Wiesner (1970s), Charles H. Bennett and Gilles Brassard (1984)

quantum link

Eve

Alice Bob

Quantum indeterminacy: quantum states cannot be
measured without disturbing the original state.

Hence Eve cannot read the bits in an unnoticeable way.

Quantum cryptography
Advantage:

security is based on the laws of quantum physics

Disadvantage:

needs a dedicated equipment.

Practicality?

Currently: successful transmissions for distances of length around 150 km.

Commercial products are available.

Warning:
Quantum cryptography should not be confused with quantum computing.

A satellite scenario

Eve

Alice Bob

000110100111010010011010111001110111
111010011101010101010010010100111100
001001111111100010101001000101010010
001010010100101011010101001010010101

A third party (a satellite) is
broadcasting random bits.

Does it help?
No...

(Shannon’s theorem of course also
holds in this case.)

Ueli Maurer (1993): noisy channel.

1 0 1 0 1 0 0 1 1 0 1 0 0 1 0 1 0 1 0 1 0 0 1 1 0 1 0 0 1 0

1 0 1 0 1 0 0 1 1 0 1 0 0 1 0

1 0 1 0 1 0 0 1 1 0 1 0 0 1 0

0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 1 1 1 0 0 1 1 0 1 0 0 0 1

1 0 1 1 1 0 0 1 1 0 1 0 0 0 0

Assumption: the data that the adversary receives is noisy.
(The data that Alice and Bob receive may be even more noisy.)

some bits get flipped
(because of the noise)

Bounded-Storage Model
Another idea: bound the size of adversary’s memory

000110100111010010011010111001110111
111010011101010101010010010100111100
001001111111100010101001000101010010
001010010100101011010101001010010101

too large to fit in Eve’s memory

Plan

1. Introduction

2. Historical ciphers

3. Information-theoretic security

4. Computational security

55

How can this be formalized?

We will use the complexity theory!

perfect secrecy:
M and EncK(M)
are independent

How to reason about the bounded
computing power?

It is enough to require that

M and EncK(M)

are independent
“from the point of view of a computationally-limited

adversary’’.

Real cryptography starts here:

Eve is computationally-bounded

We will construct schemes that in principle can be
broken if the adversary has a huge computing power.

For example, the adversary will be able to break the
scheme by enumerating all possible secret keys.

(this is called a “brute force attack”)

Ideas:

1. “She has can use at most 1000
Intel Core 2 Extreme X6800 Dual Core Processors

for at most 100 years...”

2. “She can buy equipment worth 1 million euro and use it for 30 years..”.

Computationally-bounded adversary

Eve is computationally-bounded

it’s hard to reason
formally about it

But what does it mean?

A better idea

We would need to specify exactly what we mean by a “Turing Machine”:

• how many tapes does it have?
• how does it access these tapes (maybe a “random access memory” is a

more realistic model..)
• ...

”The adversary has access to a Turing Machine that can make at most
1030 steps.”

“a system X is (t,ε)-secure if every Turing Machine

that operates in time t

can break it with probability at most ε.”

More generally, we could have definitions of a type:

This would be quite precise, but...

Moreover, this approach often leads to ugly formulas...

What to do?

t steps of a Turing Machine → “efficient computation”

ε → a value “very close to zero”.

How to formalize it?

Use the asymptotics!

Idea
:

Efficiently computable?
“polynomial-time computable

on a Probabilistic Turing
Machine”

“efficiently computable” =

that is: running in time
O(nc) (for some c)

Here we assume that the poly-time Turing Machines
are the right model for the real-life computation.

Not true if a quantum computer is built...

Probabilistic Turing Machines

0 1 1 0 1 0 1 1 0 1

A standard Turing Machine has some number of tapes:

A probabilistic
Turing Machine

has an
additional tape

with random
bits.

Some notation

If M is a Turing Machine then

M(X)

is a random variable denoting the output of M
assuming that

the contents of the random tape was chosen
uniformly at random.

If A is a set then
Y ← A

means that Y is chosen uniformly at random from the set A.

Y ← M(X)
means that the variable Y takes the value that M outputs on
input X (assuming the random input is chosen uniformly).

More notation

“very small”
=

“negligible”
=

approaches 0 faster than the inverse of any polynomial

Very small?

Formally

A function 𝝁 : N→ R is negligible if for every positive integer c
there exists an integer N such that for all x > N

𝝁 𝒙 ≤
𝟏

𝒙𝒄

Negligible or not?

yes

yes

yes

no

no𝒇 𝒏 ≔
𝟏

𝒏𝟐

𝒇 𝒏 ≔ 𝟐−𝒏

𝒇 𝒏 ≔ 𝟐− 𝒏

𝒇 𝒏 ≔
𝟏

𝒏𝟏𝟎𝟎𝟎

𝒇 𝒏 ≔ 𝒏−log 𝒏

A negligible function multiplied by a polynomial is negligible
negl * poly = negl

A sum of two negligible functions is a negligible function:
negl + negl = negl

A product of two polynomials is a polynomial:
poly * poly = poly

A sum of two polynomials is a polynomial:
poly + poly = poly

Nice properties of these notions

Moreover

Security parameter

The terms “negligible” and “polynomial” make sense only if X
and the adversary take an additional input 1n called

a security parameter.

In other words: we consider an infinite sequence X(1),X(2),... of
schemes.

Typically, we will say that a scheme X is secure if

∀
polynomial-time
Turing Machine M

P (M breaks the scheme X) is negligible

Example
security parameter n = the length of the secret key k

in other words: k is always a random element of {0,1}n

The adversary can always guess k with probability 2-n.

This probability is negligible.

He can also enumerate all possible keys k in time 2n.
(the “brute force” attack)

This time is exponential.

Is this the right approach?

Advantages

1. All types of Turing Machines are “equivalent” up to a
“polynomial reduction”.
Therefore we do need to specify the details of the model.

2. The formulas get much simpler.

Disadvantage

Asymptotic results don’t tell us anything about security of the
concrete systems.

However

Usually one can prove formally an asymptotic result and then
argue informally that “the constants are reasonable”

(and can be calculated if one really wants).

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or
all of this material is currently granted without fee provided that copies are made
only for personal or classroom use, are not distributed for profit or commercial
advantage, and that new copies bear this notice and the full citation.

