Lecture 1 Introduction to Cryptography

Stefan Dziembowski

www.crypto.edu.pl/Dziembowski

University of Warsaw

version 1.0

Basic information

- Exam: written exam at the end of the semester (60%) + midterm exam (40%). The exams will have 2 parts (theory and exercises)
- Website available from: <u>http://www.crypto.edu.pl/</u>
- Main handbook: Jonathan Katz and Yehuda Lindell
 Introduction to Modern Cryptography
- Other books:
 - Doug Stinson <u>Cryptography Theory and Practice, Third Edition</u>
 - Shafi Goldwasser and Mihir Bellare <u>Lecture Notes on Cryptography</u>
 - Alfred J. Menezes, Paul C. van Oorschot and Scott A. Vanstone <u>Handbook of Applied Cryptography</u>

Plan

- 1. Introduction
- 2. Historical ciphers
- 3. Information-theoretic security
- 4. Computational security

Historical cryptography

cryptography ≈ encryption main applications: **military and diplomacy**

What happened in the seventies?

Technology

affordable hardware

Demand

companies and individuals start to do business electronically

Theory

the computational complexity theory is born this allows researchers to reason about security in a formal way.

Cryptography

In the past:

the **art** of encrypting messages (mostly for the military applications).

<u>Now</u>:

the **science** of securing digital communication and transactions (encryption, authentication, digital signatures, e-cash, auctions, etc..)

Three components of the course

- 1. practical apects
- 2. mathematical foundations
- 3. new horizons

Practical aspects

- **symmetric encryption**: block ciphers (DES, AES) and tream ciphers (RC4)
- hash functions (MD5, SHA1,...), message authentication (CBC-MAC)
- public-key infrastructure (X.509, PGP, identitybased)
- elements of number theory
- **asymetric encrypion** (RSA, ElGamal, Rabin,...)
- **signature schemes** (RSA, ElGamal,...)

Mathematical foundations

- What makes us believe that the **protocols are secure**?
- Can we formally **define** "security"?
- Can security be **proven**?
- Do there exist "**unbreakable**" ciphers?

New horizons

Advanced cryptographic protocols, such as:

zero-knowledge

multiparty computations

• private information retrieval

This course is **not** about

- practical data security (firewalls, intrusiondetection, VPNs, etc.),
- history of cryptography,
- number theory and algebra

(we will use them **only as tools**)

- complexity theory
- cryptocurrencies and blockchain

Terminology

constructing secure systems

breaking the systems

Cryptology = cryptography + cryptanalysis

This convention is **slightly artificial** and often ignored.

Common usage:

"cryptanalysis of X" = "breaking X"

Common abbreviation: "crypto"

Cryptography – general picture

plan of the course:

	encryption	authentication
private key	1 private key encryption	2 private key authentication
public key	3 public key encryption	4 signatures

advanced cryptographic protocols

Preliminary plan of the lectures

- 1. Introduction to Cryptography
- 2. Symmetric Encryption I
- 3. Symmetric Encryption II
- 4. Symmetric Encryption III
- 5. Hash Functions and Message Authentication
- 6. Key Management and Public-Key Cryptography
- 7. A Brush-up on Number. Theory and Algebra
- 8. Public-Key Encryption I
- 9. Public-Key Encryption II
- 10. Signature Schemes and Commitment Schemes
- 11. Commitment Schemes and Zero-Knowledge Protocols
- 12. Two-party and Multi-party Computation Protocols
- 13. Private Information Retrieval
- 14. Introduction to Cryptographic Currencies

Encryption schemes (a very general picture)

Encryption scheme (cipher) = encryption & decryption

Art vs. science

In the past:

lack of precise definitions, ad-hoc design, usually insecure.

Nowadays:

formal definitions, systematic design, very secure constructions.

Provable security

We want to construct schemes that are **provably secure**.

But...

- why do we want to do it?
- how to define it?
- and is it **possible** to achieve it?

Provable security – the motivation

In many areas of computer science formal proofs are **not essential**.

For example, instead of proving that an algorithm is efficient, we can just simulate it on a *"typical* input".

In **cryptography** it's **not true**, because

there cannot exist an experimental proof that a scheme is secure.

Why?

Because a notion of a

"typical adversary"

does not make sense.

Security definitions are useful also because they allow us to construct schemes in a modular way...

Kerckhoffs' principle

<u>Auguste Kerckhoffs (1883)</u>: The enemy knows the system

The cipher should remain secure even if **the adversary knows the specification of the cipher.**

The only thing that is **secret** is a

short key **k**

that is usually chosen uniformly at random

A more refined picture

(Of course Bob can use the same method to send messages to Alice.) (That's why it's called the **symmetric setting**)

Let us assume that *k* is unifromly random

Kerckhoffs' principle – the motivation

- 1. In commercial products it is unrealistic to assume that the design details remain secret (**reverse-engineering!**)
- 2. Short keys are easier to **protect**, **generate** and **replaced**.
- 3. The design details can be discussed and **analyzed in public**.

Not respecting this principle = **``security by obscurity**".

A mathematical view

- **𝕂** − **key** space
- *M* **plaintext** space
- **C ciphertext** space

An **encryption scheme** is a pair **(Enc,Dec)**, where

- **Enc** : $\mathcal{K} \times \mathcal{M} \to C$ is an **encryption** algorithm,
- **Dec** : $\mathcal{K} \times \mathcal{C} \to \mathcal{M}$ is an **decryption** algorithm.

We will sometimes write **Enc**_k(*m*) and **Dec**_k(*c*) instead of **Enc**(*k*,*m*) and **Dec**(*k*,*c*).

<u>Correctness</u>

for every **k** we should have $Dec_k(Enc_k(m)) = m$.

Plan

1. Introduction

- 2. Historical ciphers
- 3. Information-theoretic security
- 4. Computational security

Shift cipher

 $\mathcal{M} =$ words over alphabet {A,...,Z} \approx {0,...,25} $\mathcal{K} =$ {0,...,25}

 $Enc_k(m_0,...,m_n) = (m_0 + k \mod 26,..., m_n + k \mod 26)$ $Dec_k(c_0,...,c_n) = (c_0 - k \mod 26,..., c_n - k \mod 26)$

Caesar: *k* **= 3**

Security of the shift cipher

How to break the shift cipher?

Check all possible keys!

Let *c* be a ciphertext.

For every $k \in \{0, ..., 25\}$ check if $\text{Dec}_k(c)$ "makes sense".

Most probably only one such *k* exists.

Thus $Dec_k(c)$ is the message.

This is called a **brute force attack**.

Moral: the key space needs to be large!

Substitution cipher

 \mathcal{M} = words over alphabet {A,...,Z} \approx {0,...,25} \mathcal{K} = a set of permutations of {0,...,25}

 $Enc_{\pi}(m_0,...,m_n) = (\pi(m_0),...,\pi(m_n))$

 $Dec_{\pi}(c_0,...,c_n) = (\pi^{-1}(c_0),...,\pi^{-1}(c_n))$

How to break the substitution cipher?

Use **statistical patterns** of the language.

For example: the frequency tables.

Texts of **50** characters can usually be broken this way.

Letter	Frequency		
E	0.127		
Т	0.097		
I	I 0.075		
A	0.073		
0	0.068		
N	0.067		
S	0.067		
R	0.064		
H	0.049		
С	0.045		
L	0.040		
D	0.031		
P	0.030		
Y	0.027		
U	0.024		
M	0.024		
F	0.021		
В	0.017		
G	0.016		
W	0.013		
V	0.008		
K	0.008		
X	0.005		
Q	0.002		
Z	Z 0.001		
J	J 0.001		
Figure 7 - F	figure 7 - Frequency Table		

Other famous historical ciphers

Vigenère cipher:

Blaise de Vigenère (1523 - 1596)

Leon Battista Alberti (1404 – 1472)

Enigma

Marian Rejewski (1905 - 1980)

In the past ciphers were designed in an ad-hoc manner

In contemporary cryptography the ciphers are designed in a **systematic way**.

Main goals:

- 1. define security
- 2. construct schemes that are "provably secure"

Plan

- 1. Introduction
- 2. Historical ciphers
- 3. Information-theoretic security
- 4. Computational security

Defining "security of an encryption scheme" is not trivial.

consider the following experiment

(*m* – a message)

- 1. the key *K* is chosen uniformly at random
- 2. $C := Enc_{K}(m)$ is given to the adversary

how to define security

Idea 1

(*m* – a message)

- 1. the key *K* is chosen uniformly at random
- 2. $C := Enc_{K}(m)$ is given to the adversary

An idea

"The adversary should not be able to compute **K**."

A problem

the encryption scheme that "doesn't encrypt":

$\operatorname{Enc}_{K}(m) = m$

satisfies this definition!

Idea 4

(*m* – a message)

- 1. the key **K** is chosen uniformly at random
- 2. $C := Enc_{K}(m)$ is given to the adversary

An idea

"The adversary should not learn any <u>additional</u> information about <u>m</u>."

This makes much more sense.

But how to formalize it?

Example

How to formalize the "Idea 4"?

"The adversary should not learn any <u>additional</u> information about <u>m</u>."

also called: **information-theoretically** secret

An encryption scheme is **perfectly secret** if for every random variable Mand every $m \in \mathcal{M}$ and $c \in C$ P(M = m) = P(M = m | (Enc(K,M)) = c)

equivalently: *M* and **Enc(***K***,***M*) are independent

Equivalently:

A perfectly secret scheme: one-time pad

Correctness is trivial:

 $Dec_k(Enc_k(m)) = k \operatorname{xor} (k \operatorname{xor} m)$

m

Perfect secrecy of the one-time pad

Perfect secrecy of the one time pad is also trivial.

This is because for every *m* the distribution of Enc(*K*,*m*) is uniform (and hence does not depend on *m*).

for every c: $P(Enc(K,m) = c) = P(K = m \text{ xor } c) = 2^{-t}$

Observation

One time pad can be **generalized** as follows.

Let (G,+) be a group. Let $\mathcal{K} = \mathcal{M} = C = G$.

The following is a perfectly secret encryption scheme:

- Enc(*k*,*m*) = *m* + *k*
- Dec(k,m) = m k

Why the one-time pad is not practical?

1. The key has to be as long as the message.

2. The key cannot be reused

This is because:

 $Enc_k(m_0) \operatorname{xor} Enc_k(m_1) = (k \operatorname{xor} m_0) \operatorname{xor} (k \operatorname{xor} m_1)$ $= m_0 \operatorname{xor} m_1$

Theorem (Shannon 1949)

("One time-pad is optimal in the class of perfectly secret schemes") In every perfectly secret encryption scheme Enc: $\mathcal{K} \times \mathcal{M} \to C$, Dec: $\mathcal{K} \times C \to \mathcal{M}$

we have $|\mathcal{K}| \geq |\mathcal{M}|$.

Proof

Practicality?

Generally, the **one-time pad** is **not very practical**, since:

- the key has to be as long as the total length of the encrypted messages,
- it is hard to generate truly random strings.

However, it is sometimes used (e.g. in the **military applications**), because of the following advantages:

- perfect secrecy,
- short messages can be encrypted using **pencil and paper**.

In the 1960s the Americans and the Soviets established a hotline that was encrypted using the one-time pad.(**additional advantage**: they didn't need to share their secret encryption methods) 45

Venona project (1946 – 1980)

Ethel and Julius Rosenberg

American **National Security Agency** decrypted **Soviet** messages that were transmitted in the 1940s.

That was possible because the Soviets reused the keys in the one-time pad scheme.

Outlook

We constructed a perfectly secret encryption scheme

Our scheme has certain drawbacks $(|\mathcal{K}| \ge |\mathcal{M}|)$.

But by Shannon's theorem this is unavoidable.

Can we go home and relax?

What to do?

How?

Classical (computationally-secure) cryptography: bound his <u>computational</u> power.

Alternative options: quantum cryptography, bounded-storage model,... (not too practical)

Quantum cryptography

Stephen Wiesner (1970s), Charles H. Bennett and Gilles Brassard (1984)

Quantum cryptography

Advantage:

security is based on the laws of quantum physics

Disadvantage:

needs a dedicated equipment.

Practicality?

Currently: successful transmissions for distances of length around **150 km**. Commercial products are available.

Warning:

Quantum **cryptography** should not be confused with quantum **computing**.

A satellite scenario

 A third party (a satellite) is broadcasting random bits.

Does it help? No... (Shannon's theorem of course also holds in this case.)

Assumption: the data that the adversary receives is noisy. (The data that Alice and Bob receive may be even more noisy.)

Bounded-Storage Model

Another idea: bound the size of adversary's memory

Plan

- 1. Introduction
- 2. Historical ciphers
- 3. Information-theoretic security
- 4. Computational security

How to reason about the bounded computing power?

perfect secrecy: *M* and **Enc_{***K***}(***M***) are independent**

It is enough to require that

M and **Enc_K(M)**

are independent "from the point of view of a computationally-limited adversary".

How can this be formalized?

We will use the **complexity theory**!

Real cryptography starts here:

Eve is computationally-bounded

We will construct schemes that in **principle can be broken** if the adversary has a huge computing power.

For example, the adversary will be able to break the scheme by enumerating all possible secret keys. (this is called a "**brute force attack**")

Computationally-bounded adversary

Eve is computationally-bounded

But what does it mean?

Ideas

- 1. "She has can use at most **1000 Intel Core 2 Extreme X6800 Dual Core Processors** for at most **100** years..."
- 2. "She can buy equipment worth **1** million euro and use it for **30** years.".

it's hard to reason formally about it

A better idea

"The adversary has access to a **Turing Machine** that can make at most **10**³⁰ steps."

More generally, we could have definitions of a type:

"a system X is (t, e)-secure if every Turing Machine

that operates in time t

can break it with probability at most ε ."

This would be quite precise, **but...**

We would need to specify exactly what we mean by a "**Turing Machine**":

- how many tapes does it have? how does it access these tapes (maybe a "random access memory" is a more realistic model..)

. . .

Moreover, this approach often leads to **ugly formulas**...

How to formalize it?

Use the **asymptotics**!

Efficiently computable?

"efficiently computable"

"polynomial-time computable on a **Probabilistic Turing Machine**"

that is: running in time
 O(n^c) (for some c)

Here we assume that the **poly-time Turing Machines** are the right model for the real-life computation.

Not true if a **quantum computer** is built...

Probabilistic Turing Machines

A standard Turing Machine has some number of tapes:

Some notation

If **M** is a Turing Machine then

M(*X*)

is a **random variable** denoting the **output** of *M* assuming that the contents of the random tape was chosen **uniformly at random**.

More notation

$Y \leftarrow M(X)$

means that the variable **Y** takes the value that **M** outputs on input **X** (assuming the random input is chosen uniformly).

If \mathcal{A} is a set then

$Y \leftarrow \mathcal{A}$

means that **Y** is chosen uniformly at random from the set \mathcal{A} .

Very small?

Formally

A function $\mu : \mathbb{N} \to \mathbb{R}$ is negligible if for every positive integer *c* there exists an integer N such that for all $x > \mathbb{N}$

$$|\mu(x)| \leq \frac{1}{x^c}$$

Negligible or not?

f

$$f(n) \coloneqq rac{1}{n^2}$$
 no
 $f(n) \coloneqq 2^{-n}$ yes
 $f(n) \coloneqq 2^{-\sqrt{n}}$ yes
 $(n) \coloneqq n^{-\log n}$ yes
 $f(n) \coloneqq rac{1}{n^{1000}}$ no

Nice properties of these notions

A sum of two polynomials is a polynomial: **poly + poly = poly**

A product of two polynomials is a polynomial: **poly * poly = poly**

A sum of two negligible functions is a negligible function: **negl + negl = negl**

Moreover

A negligible function multiplied by a polynomial is negligible **negl * poly = negl**

Security parameter

Typically, we will say that a **scheme X is secure** if

The terms "**negligible**" and "**polynomial**" make sense only if *X* and the **adversary** take an additional input **1**^{*n*} called a **security parameter.** In other words: we consider an infinite sequence *X*(1),*X*(2),... of

schemes.

Example

security parameter **n** = the length of the secret key **k**

in other words: k is always a random element of $\{0,1\}^n$

The adversary can always **guess** *k* with probability 2^{-*n*}.

This probability is negligible.

He can also **enumerate all possible keys** *k* in time 2^{*n*}. (the "brute force" attack)

This time is exponential.

Is this the right approach?

Advantages

1. All types of **Turing Machines** are "equivalent" up to a **"polynomial reduction**".

Therefore we do need to specify the details of the model.

2. The formulas get much simpler.

<u>Disadvantage</u>

Asymptotic results don't tell us anything about security of the **concrete systems**.

However

Usually one can prove **formally** an asymptotic result and then argue **informally** that "the constants are reasonable"

(and can be calculated if one really wants).

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.