Lecture 4a Symmetric Encryption III

Stefan Dziembowski

www.crypto.edu.pl/Dziembowski

University of Warsaw

version 1.0

Plan

- 1. Substitution-permutation networks
- 2. Cascade ciphers
- 3. Practical considerations

Substitution-permutation networks

Based on the ideas of **Claude Shannon** (1916–2001) from **1949**.

Used in AES (Rijndael), 3-Way, SAFER, SHARK, Square...

Advanced Encryption Standard (AES)

- Competition for AES announced in January 1997 by the US National Institute of Standards and Technology (NIST)
- **15** ciphers submitted
- **5** finalists: **MARS, RC6, Rijndael, Serpent**, and **Twofish**
- October 2, 2000: Rijandel selected as the winner.
- November 26, 2001: AES becomes an official standard.
- Authors : Vincent Rijmen, Joan Daemen (from Belgium)
- Key sizes: 128, 192 or 256 bit, block size: 128 bits

Substitution-permutation networks

To invert: invert the order and apply F^{-1} instead of F.

A construction of **F**

How to construct F^{-1} ?

Transformation **T** in AES

In AES *M* is represented as a 4×4 -matrix of bytes.

This transformation needs to be **invertible**...

On the other hand: it cannot be "too simple".

AES idea: use finite field algebra.

Groups

A **group** is a set *G* along with a binary operation • such that:

- **[closure]** for all $g, h \in G$ we have $g \circ h \in G$,
- there exists an **identity** $e \in G$ such that for all $g \in G$ we have $e \circ g = g \circ e = g$,
- for every $g \in G$ there exists an **inverse of**, that is an element h such that

 $\boldsymbol{g}\circ\boldsymbol{h} = \boldsymbol{h}\circ\boldsymbol{g} = \boldsymbol{e},$

- [associativity] for all $g, h, k \in G$ we have $g \circ (h \circ k) = (g \circ h) \circ k$
- **[commutativity]** for all $g, h \in G$ we have $g \circ h = h \circ g$

if this holds, the group is called **abelian**

Additive/multiplicative notation Convention:

[additive notation]

If the groups operation is denoted with +, then:
the inverse of g is denoted with -g,
the neutral element is denoted with 0,
g + … + g (n times) is denoted with ng.

[multiplicative notation] If the groups operation is denoted "×" or "·", then: sometimes we write gh instead of $g \cdot h$, the inverse of g is denoted g^{-1} or 1/g. the neutral element is denoted with 1, $g \cdots g (n \text{ times})$ is denoted with g^n $(g^{-1})^n$ is denoted with g^{-1} .

Fields

(**F**, +,×) is a **field** if

- (F, +) is an additive group with neutral element 0
- (*F* \ {0},×) is a multiplicative group
- Distributivity of multiplication over addition: for all *a*, *b*, *c* ∈ *F*, we have *a* × (*b* + *c*) = *a* × *b* + *a* × *c*

How to define a "field over bytes"?

A very simple additive group over $\{0, 1\}^n$: $(\{0, 1\}^n, +)$

where

$$(a_1, \dots, a_n) + (b_1, \dots, b_n)$$

= $(a_1 \oplus b_1, \dots, a_n \oplus b_n)$
xor

Extremely efficient to implement.

How to extend $(\{0, 1\}^n, +)$ to a field?

"Galois fields" $GF(2^n)$:

Represent each $(a_0, ..., a_{n-1}) \in \{0, 1\}^n$ as a polynomial Aover Z_2 of degree n - 1. $A(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$

Note: if (b_1, \dots, b_{n-1}) is represented as a polynomial $B(x) = b_0 + b_1 x + \dots + b_{n-1} x^{n-1}$, then $(A+B)(x) = \sum_{i=0}^{n-1} (a_i + b_i) \cdot x^i \pmod{2}$

<u>Observe</u>: this is the same as the **xor** operation on bits.

How to multiply?

Suppose:

$$A(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$$

$$B(x) = b_0 + b_1 x + \dots + b_{n-1} x^{n-1}.$$

Then $A \times B$ is a polynomial of max degree 2n - 2. How to reduce this degree?

do not exits non-constant polynomials q_0, q_1 such that $p = q_0 \cdot q_1$

Take an **irreducible polynomial** p of degree n, and compute $C = A \cdot B \pmod{p}$

Then **C** is a polynomial of degree n - 1. Write $C(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}$.

Define: $(a_0, ..., a_{n-1}) \times (b_1, ..., b_{n-1}) = (c_1, ..., c_{n-1})$

Fact from algebra: this defines a field.

AES field

AES uses $GF(2^8)$, where the polynomial p is defined as

$$p(x) = 1 + x + x^3 + x^4 + x^8$$

Invert every A_{ij} (in the multiplicative group of $GF(2^n)$). Convention: $0^{-1} = 0$.

Another observation

We can look at \mathbb{Z}_2^n as a linear space.

AES defines the following affine transformation: $\varphi(x_1, ..., x_8) \coloneqq$

> x_1 $\boldsymbol{x_2}$ x_3 $\boldsymbol{x_4}$ +* x_{5} x_6 $\boldsymbol{\chi_7}$ $\boldsymbol{\chi}_{\mathbf{8}}$

Advantages:

- SubBytes is not an operation only in GF(2ⁿ).
- The constant vector is chosen in such a way that there are no
 - fixpoints $\varphi(X) = X$
 - anti-fixpoints $\varphi(X) = \overline{X}$
- ϕ is invertible.

Complete SubBytes

SubBytes

ShiftRows

MixColumns

Observe that

$$A_{ij} \mapsto A_{ij}^{-1} \mapsto \varphi(A_{ij}^{-1})$$

is invertible (since $A_{ij} \mapsto A_{ij}^{-1}$ and φ are invertible)

Cyclic shifts of rows:

shift **1** cell left shift **2** cells left shift **3** cells left

<u>Clearly</u>: ShiftRows is invertible.

MixColumns

Clearly *M* is invertible, so the whole operation also is.

AES construction – more details

Concrete parameters:

key size: 128, 192 or 256 bit, block size: 128 bits

We omit the description of the key schedule.

Security:

best known attack: **biclique attacks [Bogdanov, Khovratovich, and Rechberger, 2013]**:

- AES-128 complexity 2^{126.1},
- AES-192 complexity 2^{189.7},
- AES-256 complexity 2^{254.4}.

Plan

- 1. Substitution-permutation networks
- 2. Cascade ciphers
- 3. Practical considerations

An idea

The main problem of **DES** is the short key!

Maybe we could increase the length of the key?

But how to do it?

Idea: cascade the ciphers!

We now describe it in an abstract way (for any block cipher **F**)

How to increase the key size?

Cascade encryption.

For example **double encryption** is defined as: $F'_{(k,k')}(x) := F_{k'}(F_k(x))$

Does it work?

- Double encryption not really...
- Triple encryption is much better!

Double encryption

n = block length = key length

Double encryption can be broken using

- time **0**(2ⁿ),
- space **0**(**2**^{*n*}),
- and **3 (plaintext, ciphertext)** pairs.

The attack is called "meet in the middle".

Meet-in-the middle attack – the idea

<u>Goal</u>: Given (x, y) find (k, k') such that $y = F_{k'}(F_k(x))$ $m = 2^n$

Meet-in-the middle attack – the algorithm

<u>Goal</u>: Given (x, y) find (k, k') such that $y = F_{k'}(F_k(x))$.

Algorithm:

- 1. For each *k* compute $z = F_k(x)$ and store (z, k) in a list *L*.
- 2. For each *k* compute $z = F_k^{-1}(y)$ and store (z, k') in a list *L*'.
- 3. Sort *L* and *L*' by their first components.
- 4. Let **S** denote the list of all pairs all pairs (k, k') such that for some z we have $(z, k) \in L$ and $(z, k') \in L'$.
- 5. Output *S*.

Meet-in-the middle attack – analysis [1/2]

Suppose: *n* = block length = key length, *x* and *y* are fixed

<u>why?</u>

because

can take

 $\mathbf{7n}$

values

P (a random pair (k, k') satisfies $y = F_{k'}(F_k(x)) \approx 2^{-n}$

The number of all pairs (k, k') is equal to 2^{2n} . Therefore

 $E(|S|) \approx 2^n \cdot 2^{-n} = 2^n.$

So we have around 2^n "candidates" for the correct pair (k, k'). How to eliminate the "false positives"?

For each "positive" check it against another pair (x', y').

Meet-in-the middle attack – analysis [2/2]

The probability that (k, k') is a false positive for (x, y) and for (x', y') is around

$$2^{-n} \cdot 2^{-n} = 2^{-2n}$$

Hence, the expected number of "false positives" is around

$$2^{2n} \cdot 2^{-2n} = 1$$

An additional pair (x'', y'') allows to eliminate the false positive.

A much better idea: triple encryption

$$F_{(k_1,k_2,k_3)}(\boldsymbol{x}) \coloneqq F_{k_3}\left(F_{k_2}^{-1}\left(F_{k_1}(\boldsymbol{x})\right)\right)$$

Sometimes $k_1 = k_3$.

Triple DES (3DES) is a standard cipher.

Disadvantages:

- rather slow,
- small block size.

Plan

1. Substitution-permutation networks

- 2. Cascade ciphers
- 3. Practical considerations

Benchmarks

	Algorithm	MiB/Second	Cycles Per Byte
stream	Salsa20	643	2.7
	Sosemanuk	727	2.4
	AES/CTR (128-bit key)	139	12.6
block <	AES/CTR (192-bit key)	113	15.4
	AES/CTR (256-bit key)	96	18.2
	AES/CBC (128-bit key)	109	16
	AES/CBC (192-bit key)	92	18.9
	AES/CBC (256-bit key)	80	21.7
	DES/CTR	32	54.7
	DES-EDE3/CTR	13	134.5

Source: www.cryptopp.com/benchmarks.html

All algorithms coded in C++, compiled with Microsoft Visual C++ 2005 SP1 (whole program optimization, optimize for speed), and ran on an Intel Core 2 1.83 GHz processor under Windows Vista in 32-bit mode.

Hardware implementations of AES

(taken from J Daemen, V Rijmen The design of Rijndael, 2001):

Example of a hardware record:

ASIC. H. Kuo and I. Verbauwhede report a throughput of 6.1 Gbit/s, using 0.18 μ m standard cell technology [55] for an implementation without pipelining. Their design uses 19000 gates. B. Weeks et al. report a throughput of 5 Gbit/s [91] for a fully pipelined version. They use a 0.5 μ m standard cell library that is not available outside NSA.

Stream ciphers vs. block ciphers

- Stream ciphers are a **bit more efficient**.
- But they appear to be "less secure".
- It is easier to misuse them (use the same stream twice).
- If you encrypt a stream of data you can always use a block cipher in a **CTR** mode.
- Probably at the moment block ciphers are a better choice for most of the applications.

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or all of this material is currently granted without fee *provided that copies are made only for personal or classroom use, are not distributed for profit or commercial advantage, and that new copies bear this notice and the full citation*.