
Lecture 4a
Symmetric Encryption III

24.10.18 version 1.0

Stefan Dziembowski
www.crypto.edu.pl/Dziembowski

University of Warsaw

Plan

1. Substitution-permutation
networks

2. Cascade ciphers

3. Practical considerations

Substitution-permutation
networks
Based on the ideas of Claude Shannon (1916–
2001) from 1949.

Used in AES (Rijndael), 3-Way, SAFER, SHARK,
Square...

Advanced Encryption Standard (AES)

• Competition for AES announced in January
1997 by the US National Institute of Standards
and Technology (NIST)

• 15 ciphers submitted

• 5 finalists: MARS, RC6, Rijndael, Serpent, and
Twofish

• October 2, 2000: Rijandel selected as the
winner.

• November 26, 2001: AES becomes an official
standard.

• Authors : Vincent Rijmen, Joan Daemen (from
Belgium)

• Key sizes: 128, 192 or 256 bit, block size: 128
bits

Substitution-permutation networks

𝒌𝟏

𝒌𝒏

𝒌𝟎

input 𝑴𝟎

output 𝑴𝒏

AddRoundKey

𝑭

...

AddRoundKey

𝑭

𝑭

AddRoundKey

…

simply:
AddRoundKey(𝒌,𝑴) = 𝒌⊕𝑴

𝒌

key
schedule

To invert: invert the order and apply 𝑭−𝟏 instead of 𝑭.

𝒌𝟏

𝒌𝒏

𝒌𝟎

input 𝑴𝟎

output 𝑴𝒏

AddRoundKey

𝑭

…

AddRoundKey

𝑭

𝑭

AddRoundKey

…

output 𝑴𝟎

input 𝑴𝒏

AddRoundKey

𝑭−𝟏
…

AddRoundKey

𝑭−𝟏

𝑭−𝟏

AddRoundKey

𝒌𝟏

𝒌𝒏

𝒌𝟎

…

𝑭 𝑭−𝟏

A construction of 𝑭

𝑴

permutation 𝝅 on bits

𝑿

𝑴′

substitution

permutation

transformation 𝑻

How to construct 𝑭−𝟏?

𝑭−𝟏𝑭
𝑴

permutation 𝝅 on bits

𝑿

𝑴′

transformation 𝑻

𝑴

permutation 𝝅−𝟏 on bits

𝑿

𝑴′

transformation 𝑻−𝟏

Transformation 𝑻 in AES

In AES 𝑴 is represented as a 𝟒 × 𝟒-matrix of bytes.

𝑴

𝑨𝟎𝟎 𝑨𝟎𝟏 𝑨𝟎𝟐 𝑨𝟎𝟑

𝑨𝟏𝟎 𝑨𝟏𝟏 𝑨𝟏𝟐 𝑨𝟏𝟑

𝑨𝟐𝟎 𝑨𝟐𝟏 𝑨𝟐𝟐 𝑨𝟐𝟑

𝑨𝟑𝟎 𝑨𝟑𝟏 𝑨𝟑𝟐 𝑨𝟑𝟑

SubBytes ShiftRows MixColumns 𝑿

a byte (𝑨𝒊𝒋 ∈ 𝟎, 𝟏 𝟖)

𝟒 × 𝟒 × 𝟖 = 𝟏𝟐𝟖 bits

Main challenge

This transformation needs to be invertible...

On the other hand: it cannot be “too simple”.

AES idea: use finite field algebra.

SubBytes ShiftRows MixColumns

11

• [closure] for all 𝒈, 𝒉 ∈ 𝑮 we have 𝒈 ∘ 𝒉 ∈ 𝑮,

• there exists an identity 𝒆 ∈ 𝑮 such that for all 𝒈 ∈ 𝑮 we have
𝒆 ∘ 𝒈 = 𝒈 ∘ 𝒆 = 𝒈,

• for every 𝒈 ∈ 𝑮 there exists an inverse of, that is an element 𝒉 such
that

𝒈 ∘ 𝒉 = 𝒉 ∘ 𝒈 = 𝒆,

• [associativity] for all 𝒈, 𝒉, 𝒌 ∈ 𝑮 we have
𝒈 ∘ (𝒉 ∘ 𝒌) = (𝒈 ∘ 𝒉) ∘ 𝒌

• [commutativity] for all 𝒈, 𝒉 ∈ 𝑮 we have
𝒈 ∘ 𝒉 = 𝒉 ∘ 𝒈

Groups
A group is a set 𝑮 along with a binary operation ∘ such that:

if this holds, the group is called abelian

12

[additive notation]
If the groups operation is denoted with +, then:

the inverse of 𝒈 is denoted with −𝒈,
the neutral element is denoted with 𝟎,
𝒈 +⋯ + 𝒈 (𝒏 times) is denoted with 𝒏𝒈.

[multiplicative notation]
If the groups operation is denoted “×” or “⋅”, then:

sometimes we write 𝒈𝒉 instead of 𝒈 ⋅ 𝒉,
the inverse of 𝒈 is denoted 𝒈−𝟏 or 𝟏/𝒈.
the neutral element is denoted with 𝟏,
𝒈 ⋅ ⋯ ⋅ 𝒈 (𝒏 times) is denoted with 𝒈𝒏

𝒈−𝟏 𝒏 is denoted with 𝒈−𝟏.

Additive/multiplicative notation
Convention:

Fields

(𝑭, +,×) is a field if

• (𝑭, +) is an additive group with neutral
element 𝟎

• (𝑭 ∖ 𝟎 ,×) is a multiplicative group

• Distributivity of multiplication over addition:
for all 𝒂, 𝒃, 𝒄 ∈ 𝑭, we have

𝒂 × 𝒃 + 𝒄 = 𝒂 × 𝒃 + 𝒂 × 𝒄

How to define a “field over bytes”?

A very simple additive group over 𝟎, 𝟏 𝒏:
(𝟎, 𝟏 𝒏, +)

where
𝒂𝟏, … , 𝒂𝒏 + 𝒃𝟏, … , 𝒃𝒏
= 𝒂𝟏 ⊕𝒃𝟏, … , 𝒂𝒏 ⊕𝒃𝒏

Extremely efficient to implement.

xor

How to extend 𝟎, 𝟏 𝒏, + to a field?

“Galois fields” 𝐆𝐅(𝟐𝒏):

Represent each 𝒂𝟎, … , 𝒂𝒏−𝟏 ∈ 𝟎, 𝟏 𝒏 as a polynomial 𝑨
over 𝒁𝟐 of degree 𝒏 − 𝟏.

𝑨 𝒙 = 𝒂𝟎 + 𝒂𝟏𝒙 +⋯+ 𝒂𝒏−𝟏𝒙
𝒏−𝟏

Note: if (𝒃𝟏, … , 𝒃𝒏−𝟏) is represented as a polynomial
𝑩 𝒙 = 𝒃𝟎 + 𝒃𝟏𝒙 +⋯+ 𝒃𝒏−𝟏𝒙

𝒏−𝟏, then

𝑨 + 𝑩 𝒙 = ෍

𝒊=𝟎

𝒏−𝟏

𝒂𝒊 + 𝒃𝒊 ⋅ 𝒙𝒊 (𝐦𝐨𝐝 𝟐)

Observe: this is the same as the xor operation on bits.

How to multiply?
Suppose:

𝑨 𝒙 = 𝒂𝟎 + 𝒂𝟏𝒙 +⋯+ 𝒂𝒏−𝟏𝒙
𝒏−𝟏

𝑩 𝒙 = 𝒃𝟎 + 𝒃𝟏𝒙 +⋯+ 𝒃𝒏−𝟏𝒙
𝒏−𝟏.

Then 𝑨 × 𝑩 is a polynomial of max degree 𝟐𝒏 − 𝟐.

How to reduce this degree?

Take an irreducible polynomial 𝒑 of degree 𝒏, and compute
𝑪 = 𝑨 ⋅ 𝑩 (𝐦𝐨𝐝 𝒑)

Then 𝑪 is a polynomial of degree 𝒏 − 𝟏.

Write 𝑪 𝒙 = 𝒄𝟎 + 𝒄𝟏𝒙 +⋯+ 𝒄𝒏−𝟏 𝒙
𝒏−𝟏.

Define: 𝒂𝟎, … , 𝒂𝒏−𝟏 × 𝒃𝟏, … , 𝒃𝒏−𝟏 = (𝒄𝟏, … , 𝒄𝒏−𝟏)

Fact from algebra: this defines a field.

do not exits non-constant polynomials 𝒒𝟎, 𝒒𝟏 such that 𝒑 = 𝒒𝟎 ⋅ 𝒒𝟏

AES field

AES uses 𝐆𝐅(𝟐𝟖), where the polynomial 𝒑 is defined
as

𝒑 𝒙 = 𝟏 + 𝒙 + 𝒙𝟑 + 𝒙𝟒 + 𝒙𝟖

First step of SubBytes

Invert every 𝑨𝒊𝒋 (in the multiplicative group of 𝐆𝐅(𝟐𝒏)).

Convention: 𝟎−𝟏 = 𝟎.

SubBytes ShiftRows MixColumns

𝑨𝟎𝟎 𝑨𝟎𝟏 𝑨𝟎𝟐 𝑨𝟎𝟑

𝑨𝟏𝟎 𝑨𝟏𝟏 𝑨𝟏𝟐 𝑨𝟏𝟑

𝑨𝟐𝟎 𝑨𝟐𝟏 𝑨𝟐𝟐 𝑨𝟐𝟑

𝑨𝟑𝟎 𝑨𝟑𝟏 𝑨𝟑𝟐 𝑨𝟑𝟑

𝑨𝟎𝟎
−𝟏 𝑨𝟎𝟏

−𝟏 𝑨𝟎𝟐
−𝟏 𝑨𝟎𝟑

−𝟏

𝑨𝟏𝟎
−𝟏 𝑨𝟏𝟏

−𝟏 𝑨𝟏𝟐
−𝟏 𝑨𝟏𝟑

−𝟏

𝑨𝟐𝟎
−𝟏 𝑨𝟐𝟏

−𝟏 𝑨𝟐𝟐
−𝟏 𝑨𝟐𝟑

𝟏

𝑨𝟑𝟎
−𝟏 𝑨𝟑𝟏

−𝟏 𝑨𝟑𝟐
−𝟏 𝑨𝟑𝟑

−𝟏

Another observation
We can look at 𝒁𝟐

𝒏 as a linear space.

AES defines the following affine transformation:
𝝋 𝒙𝟏, … , 𝒙𝟖 ≔

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

𝒙𝟏
𝒙𝟐
𝒙𝟑
𝒙𝟒
𝒙𝟓
𝒙𝟔
𝒙𝟕
𝒙𝟖

1
1
0
0
0
1
1
0

∗ +

Advantages:
• SubBytes is not an operation only in 𝐆𝐅 𝟐𝒏 .
• The constant vector is chosen in such a way that there are no

• fixpoints 𝝋 𝑿 = 𝑿

• anti-fixpoints 𝝋 𝑿 = 𝑿

• 𝝋 is invertible.

Complete SubBytes

Observe that
𝑨𝒊𝒋 ↦ 𝑨𝒊𝒋

−𝟏 ↦ 𝝋(𝑨𝒊𝒋
−𝟏)

is invertible (since 𝑨𝒊𝒋 ↦ 𝑨𝒊𝒋
−𝟏 and 𝝋 are invertible)

SubBytes ShiftRows MixColumns

𝑨𝟎𝟎 𝑨𝟎𝟏 𝑨𝟎𝟐 𝑨𝟎𝟑

𝑨𝟏𝟎 𝑨𝟏𝟏 𝑨𝟏𝟐 𝑨𝟏𝟑

𝑨𝟐𝟎 𝑨𝟐𝟏 𝑨𝟐𝟐 𝑨𝟐𝟑

𝑨𝟑𝟎 𝑨𝟑𝟏 𝑨𝟑𝟐 𝑨𝟑𝟑

𝑨𝟎𝟎
−𝟏 𝑨𝟎𝟏

−𝟏 𝑨𝟎𝟐
−𝟏 𝑨𝟎𝟑

−𝟏

𝑨𝟏𝟎
−𝟏 𝑨𝟏𝟏

−𝟏 𝑨𝟏𝟐
−𝟏 𝑨𝟏𝟑

−𝟏

𝑨𝟐𝟎
−𝟏 𝑨𝟐𝟏

−𝟏 𝑨𝟐𝟐
−𝟏 𝑨𝟐𝟑

𝟏

𝑨𝟑𝟎
−𝟏 𝑨𝟑𝟏

−𝟏 𝑨𝟑𝟐
−𝟏 𝑨𝟑𝟑

−𝟏

𝝋(𝑨𝟎𝟎
−𝟏) 𝝋(𝑨𝟎𝟏

−𝟏) 𝝋(𝑨𝟎𝟐
−𝟏) 𝝋(𝑨𝟎𝟑

−𝟏)

𝝋(𝑨𝟏𝟎
−𝟏) 𝝋(𝑨𝟏𝟏

−𝟏) 𝝋(𝑨𝟏𝟐
−𝟏) 𝝋(𝑨𝟏𝟑

−𝟏)

𝝋(𝑨𝟐𝟎
−𝟏) 𝝋(𝑨𝟐𝟏

−𝟏) 𝝋(𝑨𝟐𝟐
−𝟏) 𝝋(𝑨𝟐𝟑

−𝟏)

𝝋(𝑨𝟑𝟎
−𝟏) 𝝋(𝑨𝟑𝟏

−𝟏) 𝝋(𝑨𝟑𝟐
−𝟏) 𝝋(𝑨𝟑𝟑

−𝟏)

ShiftRows

𝑩𝟎𝟎 𝑩𝟎𝟏 𝑩𝟎𝟐 𝑩𝟎𝟑

𝑩𝟏𝟎 𝑩𝟏𝟏 𝑩𝟏𝟐 𝑩𝟏𝟑

𝑩𝟐𝟎 𝑩𝟐𝟏 𝑩𝟐𝟐 𝑩𝟐𝟑

𝑩𝟑𝟎 𝑩𝟑𝟏 𝑩𝟑𝟐 𝑩𝟑𝟑

𝑩𝟎𝟎 𝑩𝟎𝟏 𝑩𝟎𝟐 𝑩𝟎𝟑

𝑩𝟏𝟏 𝑩𝟏𝟐 𝑩𝟏𝟑 𝑩𝟏𝟎

𝑩𝟐𝟐 𝑩𝟐𝟑 𝑩𝟐𝟎 𝑩𝟐𝟏

𝑩𝟑𝟑 𝑩𝟑𝟎 𝑩𝟑𝟏 𝑩𝟑𝟐

SubBytes ShiftRows MixColumns

Cyclic shifts of rows:

shift 1 cell left

shift 2 cells left

shift 3 cells left

Clearly: ShiftRows is invertible.

MixColumns

SubBytes ShiftRows MixColumns

𝑪𝟎𝟎 𝑪𝟎𝟏 𝑪𝟎𝟐 𝑪𝟎𝟑

𝑪𝟏𝟎 𝑪𝟏𝟏 𝑪𝟏𝟐 𝑪𝟏𝟑

𝑪𝟐𝟎 𝑪𝟐𝟏 𝑪𝟐𝟐 𝑪𝟐𝟑

𝑪𝟑𝟎 𝑪𝟑𝟏 𝑪𝟑𝟐 𝑪𝟑𝟑

𝑪𝟎𝟐

𝑪𝟏𝟐

𝑪𝟐𝟐

𝑪𝟑𝟐

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

∗ =:

𝑪′𝟎𝟐

𝑪′𝟏𝟐

𝑪′𝟐𝟐

𝑪′𝟑𝟐

𝑪′𝟎𝟎 𝑪′𝟎𝟏 𝑪′𝟎𝟐 𝑪′𝟎𝟑

𝑪′𝟏𝟎 𝑪′𝟏𝟏 𝑪′𝟏𝟐 𝑪′𝟏𝟑

𝑪′𝟐𝟎 𝑪′𝟐𝟏 𝑪′𝟐𝟐 𝑪′𝟐𝟑

𝑪′𝟑𝟎 𝑪′𝟑𝟏 𝑪′𝟑𝟐 𝑪′𝟑𝟑

Multiply every column by a
matrix 𝑴 (in 𝐆𝐅(𝟐𝟖)):

𝑴:

Clearly 𝑴 is invertible, so the whole operation also is.

AES construction – more details

Concrete parameters:
key size: 128, 192 or 256 bit,
block size: 128 bits

We omit the description of the key schedule.

Security:

best known attack: biclique attacks [Bogdanov, Khovratovich,
and Rechberger, 2013]:

• AES-128 complexity 𝟐𝟏𝟐𝟔.𝟏,

• AES-192 complexity 𝟐𝟏𝟖𝟗.𝟕,

• AES-256 complexity 𝟐𝟐𝟓𝟒.𝟒.

Plan

1. Substitution-permutation
networks

2. Cascade ciphers

3. Practical considerations

An idea

The main problem of DES is the short key!

Maybe we could increase the length of the key?

But how to do it?

Idea: cascade the ciphers!

We now describe it in an abstract way (for any block
cipher 𝑭)

How to increase the key size?

Cascade encryption.

For example double encryption is defined as:
𝑭’(𝒌,𝒌′)(𝒙) ∶= 𝑭𝒌’(𝑭𝒌(𝒙))

𝑭

𝒌

𝑭

𝒌’

𝒙 𝑭𝒌’(𝑭𝒌(𝒙))𝑭𝒌(𝒙)

Does it work?
• Double encryption – not really...
• Triple encryption is much better!

Double encryption

Double encryption can be broken using

• time 𝑶 𝟐𝒏 ,

• space 𝑶(𝟐𝒏),

• and 𝟑 (plaintext,ciphertext) pairs.

The attack is called “meet in the middle”.

𝒏 = block length = key length

Meet-in-the middle attack – the idea

𝒙

𝒌𝟏

𝒌𝟐

𝒌𝒎

𝑭𝒌𝟏(𝒙)

𝑭𝒌𝟐(𝒙)

𝑭𝒌𝒎(𝒙)

𝒚

𝑭𝒌𝟏
−𝟏(𝒚)

𝑭𝒌𝟐
−𝟏(𝒚)

𝑭𝒌𝒎
−𝟏(𝒚)

𝒌𝟏

𝒌𝟐

𝒌𝒎

Goal: Given (𝒙, 𝒚) find (𝒌, 𝒌’) such that 𝒚 = 𝑭𝒌’(𝑭𝒌 (𝒙))

just find a pair of
equal values

𝑭𝒌(𝒙) and 𝑭𝒌′
−𝟏(𝒚)

How?
sort both lists!

. . .

. . .

𝒎 = 𝟐𝒏

Meet-in-the middle attack – the algorithm

Goal: Given (𝒙, 𝒚) find (𝒌, 𝒌’) such that 𝒚 = 𝑭𝒌’(𝑭𝒌 (𝒙)).

Algorithm:

1. For each 𝒌 compute 𝒛 = 𝑭𝒌(𝒙) and store (𝒛, 𝒌) in a list
𝑳.

2. For each 𝒌 compute 𝒛 = 𝑭𝒌
−𝟏(𝒚) and store (𝒛, 𝒌’) in a

list 𝑳’.

3. Sort L and 𝑳’ by their first components.

4. Let S denote the list of all pairs all pairs (𝒌, 𝒌’) such
that for some 𝒛 we have

(𝒛, 𝒌) ∈ 𝑳 and (𝒛, 𝒌’) ∈ 𝑳’.

5. Output 𝑺.

Meet-in-the middle attack – analysis [1/2]

Suppose: 𝒏 = block length = key length, 𝒙 and 𝒚 are fixed

𝑷 (𝐚 𝐫𝐚𝐧𝐝𝐨𝐦 𝐩𝐚𝐢𝐫 𝒌, 𝒌’ 𝐬𝐚𝐭𝐢𝐬𝐟𝐢𝐞𝐬 𝒚 = 𝑭𝒌’(𝑭𝒌(𝒙))) ≈ 𝟐−𝒏

The number of all pairs (𝒌, 𝒌’) is equal to 𝟐𝟐𝒏. Therefore

𝑬(|𝑺|) ≈ 𝟐𝒏 · 𝟐−𝒏 = 𝟐𝒏.

why?
because
𝑭𝒌’(𝑭𝒌(𝒙))

can take
𝟐𝒏

values

So we have around 𝟐𝒏 “candidates” for the correct pair (𝒌, 𝒌’).

How to eliminate the “false positives”?

For each “positive” check it against another pair (𝒙’, 𝒚’).

An additional pair (𝒙’’, 𝒚’’) allows to eliminate the
false positive.

Hence, the expected number of “false positives” is
around

𝟐𝟐𝒏 · 𝟐−𝟐𝒏 = 𝟏

The probability that (𝒌, 𝒌’) is a false positive for
(𝒙, 𝒚) and for (𝒙’, 𝒚’) is around

𝟐−𝒏 · 𝟐−𝒏 = 𝟐−𝟐𝒏.

Meet-in-the middle attack – analysis [2/2]

𝑭(𝒌𝟏,𝒌𝟐,𝒌𝟑) 𝒙 ≔ 𝑭𝒌𝟑 𝑭𝒌𝟐
−𝟏 𝑭𝒌𝟏 𝒙

A much better idea: triple encryption

𝑭

𝒌𝟏

𝑭

𝒌𝟐

𝒙 𝑭𝒌𝟏 𝒙 𝑭𝑭𝒌𝟐
−𝟏 𝑭𝒌𝟏 𝒙

𝒌𝟑

𝑭𝒌𝟑 𝑭𝒌𝟐
−𝟏 𝑭𝒌𝟏 𝒙

Sometimes 𝒌𝟏 = 𝒌𝟑.

Triple DES (3DES) is a standard
cipher.

Disadvantages:

• rather slow,

• small block size.

Plan

1. Substitution-permutation
networks

2. Cascade ciphers

3. Practical considerations

Benchmarks

Algorithm MiB/Second Cycles Per Byte

Salsa20 643 2.7

Sosemanuk 727 2.4

AES/CTR (128-bit key) 139 12.6

AES/CTR (192-bit key) 113 15.4

AES/CTR (256-bit key) 96 18.2

AES/CBC (128-bit key) 109 16

AES/CBC (192-bit key) 92 18.9

AES/CBC (256-bit key) 80 21.7

DES/CTR 32 54.7

DES-EDE3/CTR 13 134.5

Source: www.cryptopp.com/benchmarks.html
All algorithms coded in C++, compiled with Microsoft Visual C++ 2005 SP1
(whole program optimization, optimize for speed), and ran on an Intel Core 2
1.83 GHz processor under Windows Vista in 32-bit mode.

stream

block

Hardware implementations of
AES
(taken from J Daemen, V Rijmen The design of
Rijndael, 2001):

Example of a hardware record:

Stream ciphers vs. block ciphers

• Stream ciphers are a bit more efficient.

• But they appear to be “less secure”.

• It is easier to misuse them (use the same stream
twice).

• If you encrypt a stream of data you can always
use a block cipher in a CTR mode.

• Probably at the moment block ciphers are a
better choice for most of the applications.

©2018 by Stefan Dziembowski. Permission to make digital or hard copies of part or
all of this material is currently granted without fee provided that copies are made
only for personal or classroom use, are not distributed for profit or commercial
advantage, and that new copies bear this notice and the full citation.

