Lecture 13a Private Information Retrieval

Stefan Dziembowski

www.crypto.edu.pl/Dziembowski

University of Warsaw

11.01.17 version 1.0

Plan

- 1. Introduction
 - 2. Construction

Private Information Retrieval (PIR)

In a nutshell:

a protocol that allows to access a database without revealing what is accessed.

Main difference with the secure two-party computations:

- 1. secrecy of only one party is protected,
- on the other hand: there is a restriction on communication complexity.

PIR was introduced in:

B. Chor, E. Kushilevitz, O. Goldreich and M. Sudan, **Private Information Retrieval**, Journal of ACM, 1998

Motivation: AOL search data scandal (2006)

#4417749:

- clothes for age 60
- 60 single men
- best retirement city
- jarrett arnold
- jack t. arnold
- jaylene and jarrett arnold
- gwinnett county yellow pages
- rescue of older dogs
- movies for dogs
- sinus infection

Thelma Arnold 62-year-old widow Lilburn, Georgia

Observation

The owners of databases know a lot about the users!

This poses a risk to users' privacy.

E.g. consider database with stock prices...

Can we do something about it?

We can:

trust them that they will protect our secrecy,

or

use cryptography!

Our settings

Question

How to protect privacy of queries?

user *U*

wants to retrieve some data from **D**

database **D**

shouldn't learn what *U* retrieved

Let's make things simple!

Trivial solution

The database simply sends everything to the user!

Non-triviality

The previous solution has a drawback:

the communication complexity is huge!

Therefore we introduce the following requirement:

"Non-triviality":

the number of bits communicated between U and D has to be smaller than w.

Private Information Retrieval

Note: secrecy of the database is not required

How to define secrecy of the user [1/2]?

<u>Def.</u> T(i, B) – **transcript** of the conversation.

For fixed *i* and *B* T(i,B)is a **random variable**(since the parties are randomized)

How to define secrecy of the user [2/2]?

<u>Secrecy of the user</u>: for every i, j ∈ {0, 1}

7

single-round case:

it is impossible to distinguish between Q(i) and Q(j)

multi-round case:

it is impossible to distinguish between T(i, B) and T(j, B)

even if the adversary is malicious

depending on the settings: computational or unconditional indistinguishability

Computationally-secure PIR – formally

computational-secrecy:


```
For every i, j \in \{0, 1\}

it is impossible to distinguish

efficiently

between

T(i, B) and T(j, B)
```

Formally: for every **polynomial-time** probabilistic algorithm **A** the value:

$$|P(A(T(i,B)) = 0) - P(A(T(j,B)) = 0)|$$

should be **negligible.**

What it possible?

Fact

Information-theoretically secure single-server PIR does not exist [exercise].

What can be constructed is the following:

- computationally-secure PIR (we show it now)
- information-theoretically secure multi-server PIR [exercise]

PIR vs OT

PIR looks similar to the 1-out-of-w OT

Differences:

- advantage of PIR: low communication complexity
- advantage of OT: privacy of the database is protected

Can we combine both?

Yes! It's called "symmetric PIR".

Plan

1. Introduction

2. Construction

The construction

Kushilevitz and R. Ostrovsky Replication Is NOT Needed: SINGLE Database, Computationally-Private Information Retrieval, FOCS 1997

based on the Quadratic Residuosity Assumption.

Our presentation strategy:

- 1. we first present a **wrong** solution
- 2. then we fix it.

Quadratic Residuosity Assumption

Quadratic Residuosity Assumption (QRA):

For a random $a \leftarrow Z_N^+$ it is computationally hard

to determine if $a \in QR_N$.

Formally: for every **polynomial-time** probabilistic algorithm **D** the value:

$$\left| P(D(N,a) = Q_N(a)) - \frac{1}{2} \right|$$

(where $a \leftarrow Z_N^+$) is negligible.

Where a predicate

$$Q_N: Z_N^+ \to \{0, 1\} \text{ is}$$

defined as follows:

$$Q_N(a) = 0 \text{ if } a \in QR_N$$

$$Q_N(a) = 1$$
 otherwise

Homomorphism of Q_N

For all $a, b \in \mathbb{Z}_N^+$

$$Q_N(ab) = Q_N(a) \oplus Q_N(b)$$

First (wrong) idea

 $Y_j = \begin{cases} X_j^2 & \text{if } B_j = 0 \\ X_i & \text{otherwise} \end{cases}$

 Y_i is a QR iff $B_i = 0$

M is a QR iff $B_i = 0$

the user checks if **M** is a **QR**

M

 $\overline{\text{Set}} M = Y_1 \cdot Y_2 \cdot \cdots \cdot Y_w$

Problems!

PIR from the previous slide:

- correctness √
- security?

To learn *i* the database would need to distinguish **NQR** from **QR**.

QR X ₁	QR X ₂		QR X _{i-1}	NQR X _i	QR X _{i+1}		QR X _{w-1}	QR X _w
-----------------------------	----------------------	--	-------------------------------	-----------------------	-------------------------------	--	-------------------------------	----------------------

non-triviality? doesn't hold!

<u>communication</u>:

user \rightarrow database: $|B| \cdot |N|$

database \rightarrow user: |N|

How to fix it?

<u>Idea</u>

Given:

$$(|B|, 1)$$
-PIR

construct

$$(\sqrt{|B|}, \sqrt{|B|})$$
-PIR

Suppose that $|B| = v^2$ and present **B** as a $v \times v$ -matrix:

<i>B</i> 1	B2	<i>B</i> 3	B4	<i>B</i> 5	<i>B</i> 6	<i>B</i> 7	<i>B</i> 8	<i>B</i> 9	<i>B</i> 10	<i>B</i> 11	<i>B</i> 12	<i>B</i> 13	B14	<i>B</i> 15	<i>B</i> 16

An improved idea

Looks even worse:

communication:

user → database: $v^2 \cdot |N|$

database \rightarrow user: $\boldsymbol{v} \cdot |\boldsymbol{N}|$

12

The method

Let j be the column where B_i is.

In every "row" the user asks for the *j*th element

So, instead of sending v queries the user can send one!

Observe: in this way the user learns all the elements in the *j*th column!

Putting things together

So we are done!

PIR from the previous slide:

- correctness $\sqrt{}$
- non-triviality: communication complexity = $2\sqrt{|B|} \cdot |N| = \sqrt{|B|}$
- security?

To learn *i* the database would need to distinguish NQR from QR.

Formally:

from

any adversary that breaks our scheme we can construct an algorithm that breaks QRA

Improvements

<u>Idea</u>: apply **PIR** recursively!

Extensions

• Symmetric PIR (also protect privacy of the database).

[Gertner, Ishai, Kushilevitz, Malkin. 1998]

- Searching by key-words
 - [Chor, Gilboa, Naor, 1997]
- Public-key encryption with key-word search

[Boneh, Di Crescenzo, Ostrovsky, Persiano]

