24.10.18

Lecture 5a
Hash Functions 11

Stefan Dziembowski

www.crypto.edu.pl/Dziembowski

University of Warsaw

version 1.0

Plan

1. Other uses of hash functions
1. Merkle trees

2. Practical randomness extraction and the
random oracle model

3. Password storage and Proofs of Work

2. Real-life constructions

Consider again file fingerprinting

H

large file F

7

A question

Suppose a file F consists of many smaller blocks
R4, ..., R,, and the user may want to access only one of

them. How to “fingerprint F”?

Naive solution: fingerprint each of them independently.

5 E B B R E N N
AAAAALAAAA

Better solution: construct a Merkle tree:

MerkleProof(Rs) =
Merkle(R, ..., Rg) % p R, H(Rg,R7), ...
H(Ry,R;7) H(R3,R4) H(Rs, R¢) H(R7,Rg)
R, R, R; R, R R R, Rg

Recall: Merkle trees allow to efficiently prove that each block
R; was included into the hash C.

This is done by sending MerkleProof(R;).

Easy to see: if H is collision resistant then so is Merkle.

File sharing

BitTorrent, Gnutella, Gnutella2, and Direct
Connect P2P... - a variant of the idea from the
previous slides:

* files in the peer-to-peer networks are identified
by their hashes

* each file consists of “pieces”
* the users download the pieces from each other.
* some of them use Merkle trees.

Plan

1. Other uses of hash functions
1. Merkle trees

2. Practical randomness extraction and the
random oracle model

3. Password storage and Proofs of Work

2. Real-life constructions

How the outputs of hash functions
look in real life?

C:\> echo_ -n "Wydziat Matematyki, Informatyki i
Mechaniki~ | openssl shal

30428440c00bd45d2e2fd93ed980fbd8aa063428

C:\> echo -n "Wydziat Matematyki, Informtyki i
Mechaniki~ | openssl shal

9937fe966d988e8163fe07f6aldbd9caf624el1c8

C:\> echo -n "Wydzial Matematyki Informatyki i
Mechaniki® | openssl shal

456b370c5afe5f45c0af4a6290d02f6d2+557381

Observation: the outputs on different inputs are “unrelated”
and “completely random”.

we will formalize this property in a moment

Example of how this property is used: deriving
“uniformly random keys” from “non-uniform
randomness”

shorter “uniformly random” H(m)

a hash function
H:{0,1}" - {0,1}!

user generated randomness X (key strokes, mouse
movements, passwords, etc.)

Example: password-based encryption

H - hash function
(E, D) - encryption scheme

message
m

shared password

Warning:
there exist much better

solutions for this
problem

¢ = E(H(m), m)

—

»

o |

\

shared password 7

m = D(H(m),c)

Informally:
The only thing that

Eve can do is to
examine all possible
passwords .

Random oracle model

[Fiat, Shamir: How to Prove Yourself: Practical

Solutions to Identification and Signature Problems.
1986]

|Bellare, Rogaway: Random Oracles are Practical: A
Paradigm for Designing Efficient Protocols, 1993]

Idea: model the hash function as a random oracle.

SH®) —

s

1}* - {O’ 1}L

H:{0,

a completely random
function

Remember the pseudorandom
functions?

A random function
F: {0,1}" - {0,1}™

Crucial difference:
Also the adversary can
query the oracle

informal description:

“knows H”
l a protocol

formal model: Every call to H

is replaced
/ with a query
to the oracle.

H: {01}* > V{O; 1} a protocol
T 1 T 1 \j also the

adversary is
, allowed to
query the
oracle.

A 4

How would we use it in the proof?

shorter “uniformly random” H (X)

a hash function
H:{0,1}" - {0,1}!

user generated randomness X

As long as the adversary never queried the oracle on X
the value H(X) “looks completely random to him”.

Criticism of the Random Oracle Model

[Canetti, Goldreich, Halevi: The random oracle methodology, revisited. 1998]

There exists a signature scheme that is
* secure in ROM
but

* is not secure if the random oracle is replaced with any
real hash function.

This example is very artificial. No “realistic” example of
this type is know.

Terminology

Model without the random oracles:
*“plain model”
*“cryptographic model”

Random Oracle Model is also called:
the “Random Oracle Heuristic”.

Common view: a proof in ROM is better than nothing.

Plan

1. Other uses of hash functions
1. Merkle trees

2. Practical randomness extraction and the
random oracle model

3. Password storage and Proofs of Work

2. Real-life constructions

Password storage

Simple idea: instead of storing user’s
passwords m in plaintext store their

hashes. =
Better: “salted hashes” (s, H(s,)) \/

advantages:
1. makes “precomputation attacks” harder (we

discussed these attacks on the last exercises)
2. if two users have the same password then the
stored values are different.

Proofs of work

Introduced by Dwork and Naor [Crypto 1992] as a
countermeasure against spam.

Basic idea: Force users to do some computational work:
solve a moderately difficult “puzzle” (checking correctness
of the solution has to be fast).

[want to send you

computes an email
s - “asolution » R
» - \ .
for x - .

solve a puzzle

this takes ' e e
(. x first verifies if s is a

solution for x

S > (this takes a few

ok milliseconds)

10 seconds)

A simple hash-based PoW

H - a hash function whose computation takes time TIME(H)

-
< random x

) Verifier
checks if
H(s, x) starts
with n zeros

Prover
finds s such that
H(s, x) starts with n zeros (in binary)

salt “hardness parameter

(in ROM) takes expected time 2" - TIME(H) takes time TIME(H)

This PoW is used in Bitcoin.

Problem

Computing typical hash functions is much faster when done in
parallel and in hardware (this can give advantage to a
powerful adversary).

For example “Bitcoin mining” is done almost entirely on
ASICs

AntMiner S7 Avalon6 SP20 Jackson

Advertised Capacity: Advertised Capacity: Advertised Capacity:

4.73 This 3.5 Th/s 1.3-1.7 Th/s
Power Efficiency: Power Efficiency: Power Efficiency:
0.25 W/Gh 0.29 W/Gh 0.65 W/Gh
Weight: Weight: Weight:

8.8 pounds 9.5 pounds 20 pounds

Guide: Guide: Guide:

Yes No Yes

Price: Price: Price:

$479.95 $499.95 $248.99

Idea for a solution

Design hash functions whose computation needs to lot of
memory, so it’s hard to implement it efficiently in
hardware

Example: scrypt hash function introduced in:

Colin Percival, Stronger Key Derivation via Sequential
Memory-Hard Functions, 2009.

Used in Litecoin

Has one practical drawback: it’s access pattern is data-
dependent (hence: it reveals the input).

bad for the side-channel

resilience

How scrypt works?

computing scrvpt

init phase: fill-in at table of length N with pseudorandom expansion of X.

Vo= X Vi =H(X) V, =H(V;) S Vu_1 = HWVy_5)

result (for N = 10):
Vo Vi V, Vs V, Vs Vg V;, Vg Vo

second phase: compute the output by accessing the table
"pseudorandomly”

fori = 0toN — 1do
j:= XmodN
output X

What is known about scrypt?

[Percival, 2009]:
* it can be computed in time O(N),

* to compute it one needs time T and space S such that
S X T = Q(N?)

this holds even on a parallel machine.

Pictorially:
a circuit
computing
scrypt

le— ~ —

An observation
[Alwen, Serbinenko, STOC'15]: this definition is not
strong enough.

The adversary that wants to compute scrypt in parallel
can “amortize space”. Example:

T = = S can be

T |= 2 e 2 £ ‘é computed in
S B S 2 2 5 parallel as

l S @ T @ ° @ follows:

Note: 28 < 3S§.
So: the bound provided by Percival is meaningless.

An observation
[Alwen, Serbinenko, STOC'15]: this definition is not
strong enough.

The adversary that wants to compute scrypt in parallel
can “amortize space”. Example:

T = = S can be

T |= 2 e 2 £ ‘é computed in
S B S 2 2 5 parallel as

l S @ T @ ° @ follows:

Note: 28 < 3S§.
So: the bound provided by Percival is meaningless.

The “right” definition [Alwen and Serbinenko]

instead of lookingat§ X T... look at the sum of
memory cells used over
time
a circuit T
computing T

“the area on the picture”
scrypt l

St
A recent result

Alwen, Chen, Pietrzak, Reyzin, and Tessaro: Scrypt is

Maximally Memory-Hard, Cryptology ePrint Archive, Oct
2016

Password Hashing Competition

announced in 2013

run by an independent panel of experts

website: password-hashing.net

winner (2015): Argon2 (by Biryukov, Dinu, and Khovratovic)

broken (together with several other competition finalists) by
Alwen, Gazi, Kamath, Klein, Osang, Pietrzak, Reyzin, Rolinek,
Rybar: On the Memory-Hardness of Data-Independent
Password-Hashing Functions, Aug 2016

Several improvements to Argon2 (e.g.: “Argon2i 1.3” were
also broken)

Plan

1. Other uses of hash functions
1. Merkle trees

2. Practical randomness extraction and the
random oracle model

3. Password storage and Proofs of Work

2. Real-life constructions

Fact

There exists a generic attack on any hash function
H:{0,1}* - {0,1}"

that finds a collision with probability% and works in

time and space O (25).

[t's called a birthday attack and we will discuss it
during the exercises.

Consequence: to achieve “m bits of security” one
needstosetn =2 -m.

MD5 (Message-Digest Algorithm 5)

* based on the Merkle-Damgard
paradigm

* output length: 128 bits,
* designed by Rivest in 1991,

*in 1996, Dobbertin found collisions in
the compressing function of MD5,

*in 2004 a group of Chinese
mathematicians desighed a method for
finding collisions in MD5,

June 2005: researchers at the Bochum University
produce 2 postscript documents with the same MD5 hash

Julius. Caesar Julius. Caesar

Via Appia | _ Via Appia |

Rome, The Roman Empire Rome, The Roman Empire
May, 22, 2005 May, 22, 2005
To Whom it May Concern: Order:
Alice Falbala fulfilled all the requirements of the Roman Empire Alice Falbala is given full access to all confidential and secret
intern position. She was excellent at translating roman into her gaul information about GAUL.

native language, learned very rapidly, and worked with considerable
independence and confidence.

Her basic work habits such as punctuality, interpersonal deportment, Sincerely,
communication skills, and completing assigned and self-determined

oals were all excellent. -
g ‘ Julius Caesar

I recommend Alice for challenging positions in which creativity,
reliability, and language skills are required.

[highly recommend hiring her. If you'd like to discuss her attributes
in more detail, please don’t hesitate to contact me.

both hash to
a25f7fob 29eeBOb39
68c86073 533a4b9 -

Sincerely,

Julius Caesar

This is done by exploiting the redundancy in postscript.

Colliding certificates

2005 and 2006: A. Lenstra, X. Wang, and B. de
Weger found X.509 certificates with different public
keys and the same MD5 hash.

(we will discuss the X.509 certificates later)

Two certificates for different names (“Arjen K.
Lenstra” and “Marc Stevens”) and different public
keys.

Flame malware

attack on the Microsoft Windows Update Mechanism
exploiting MD5 collision

FLAME: THE SPY MALWARE INFILTRATING COMPUTERS IN THE MIDDLE EAST

Number and location of Flame infections detected by Kaspersky Lab on customer machines

08 SYRIA
LEBANON \}'
ISRAEL PALESTINE —_)

\t’

SAUDI
ARABIA

1y SAUDI
2 ARABIA

SOURCES: WIRED | KASPERSKY

SHA-1 (Secure Hash Algorithm)

* based on the Merkle-Damgard paradigm
* output length: 160 bits,

* designed in 1993 by the NSA,

* in 2005 Xiaoyun Wang, Andrew Yao and
Frances Yao presented an attack that runs in
time 2°3,

* Oct 2015: [Stevens, Karpman, and Peyrin:
Freestart collision on full SHA-1}
a collision in the compression function in 257
SHA-1 evaluations.

* Feb 2017: [Stevens, Bursztein, Karpman,
Albertini , Markov
a collision in full SHA-1

The collision that was found in 2015

Input 1
Vi1 50 6b 01 78 ff 6d 18 90 20 22 91 fd 3a de 38 71 b2 c6 65 ea
M1 9d 44 38 28 a5 ea 3d f0 86 ea a0 fa 77 83 a7 36

33 24 48 4d af 70 2a aa a3 da be 79 d8 a6 9e 2d
54 38 20 ed a7 ff fb 52 d3 ff 49 3f c3 ff 55 le
fb ff d9 7f 55 fe ee f2 08 5a £3 12 08 86 88 a9

SHAT _compression_function (IV1,M1) £f0 20 48 6f 07 1b f1 10 53 54 7a 86 f4 a7 15 3b 3c 95 0f 4b
Input 2

V2 50 6b 01 78 ff ed 18 91 a0 22 91 fd 3a de 38 71 b2 c6 €5 ea

M2 3f 44 38 38 81 ea 3d ec a0 ea al ee 51 83 a7 2c

33 24 48 5d ab 70 2z bé ef da be ed d4 a6 9e 2f
94 38 20 fd 13 ff fb 4e ef £f 49 3b 7f £f 55 04
db ff d9 6f 71 fe ee ce e4 5a £3 06 04 86 88 ab

SHA1 _compression_function (IV2,M2) f0 20 48 &f 07 1b f1 10 53 54 7a 86 f4 a7 15 3b 3c 95 0f 4b

Hardware used in [Stevens, Karpman,

and Peyrin: Freestart collision on full
SHA-1]:

“We have computed the SHA-1 freestart collision

on Kraken, our 64-GPU cluster. More precisely Kraken is
composed of 16 nodes, each node being made of simple,
cheap and widely available hardware: 4 GTX-970 GPUs, 1
Haswell i5-4460 processor and 16GB of RAM.”

An estimation

[Stevens, Karpman, and Peyrin: Freestart
collision on full SHA-1]

“Concretely, we estimate the SHA-1 collision cost
today (i.e., Fall 2015) between 75K$ and 120K$
renting Amazon ECZ cloud computing over a few
months.”

Reaction of the industry

Microsoft may block SHA1 certificates sooner
than expected

Encrypted sites running old certificates will be inaccessible from modern browsers.

. a By Zack Whittaker for Zero Day | November g, 2015 -- 13:16 GMT (13:16 GMT) | Topic: Security

Mozilla Security Blog

20+ Continuing to Phase Out SHA-
1 Certificates

In our previous blog post about phasing out certificates with SHA-1 based signature

algorithms, we said that we planned to take a few actions with regard to SHA-1 certificates:

1. Add a security warning to the Web Console to remind developers that they should not be
using a SHA-1 based certificates

2. Show the “Untrusted Connection” error whenever a SHA-1 certificate issued after January 1,
2016, is encountered in Firefox

3. Show the “Untrusted Connection” error whenever a SHA-1 certificate is encountered in
Firefox after January 1, 2017

The attack from 2017

) shattered.io 7«':(

Tgpk\
4

ey

We have broken SHA-1 in practice. Collision attack: same hashes

This industry cryptographic hash function
standard is used for digital signatures and file
integrity verification, and protects a wide

cnartriim Af Aiaital aceate inFhiidina Fradit FarAd

Two colliding pdf files:

SHAttered SHAttered

The first concrete collision attack against SHA-1 The first concrete collision attack against SHA-1

https://shattered.io
Wl Googdle W Googdle

Elie Bursztein Elie Bursztein
Marc Stevens Ange Albertini Marc Stevens Ange Albertini

Pierre Karpman Yatik Markov Pierre Karpman Yarik Markov

An unexpected victim of this attack

l GET OUR DIGITAL MAGAZINE
PCWorld o I
FROM IDG o O @

NEWS REVIEWS HOW-TO VIDEO BUSINESS LAPTOPS TABLETS = PHONES = HARDWARE = SECURITY = SOFTWARE = GADGETS @

Privacy Encryption Antivirus

SHA-1 collision can break SVN code repositories
'he WebKit repository was corrupted after someone committed two colliding PDF files to it

6G6OCPO OO

By Lucian Constantin
Romania Correspondent, IDG News Service

A new hash algorithm: SHA-3

Selected by the National Institute of Standards
and Technology (NIST) in an open competition.

5 finalists: BLAKE, Grgstl, JH, Keccak, Skein.

Winner (2012): Keccak.

SHA-3: Keccak

authors: Guido Bertoni, Joan Daemen, Michaél
Peeters, and Gilles Van Assche

output lengths: 224,256, 384, 512, or unbounded
speed: 12.5 cycles per byte on Core 2
Not based on the Merkle-Damgard paradigm.

Instead: it uses the sponge construction.

Standardized Keccak's parameters
for fixed output length

state width N capacity ¢ output

b pacity length
1600 1344 256 224
1600 1344 256 256
1600 1088 512 384

1600 1088 512 512

©2017 by Stefan Dziembowski. Permission to make digital or hard copies of part or
all of this material is currently granted without fee provided that copies are made
only for personal or classroom use, are not distributed for profit or commercial
advantage, and that new copies bear this notice and the full citation.

