
Lecture 5a
Hash Functions II

24.10.18 version 1.0

Stefan Dziembowski
www.crypto.edu.pl/Dziembowski

University of Warsaw

Plan

1. Other uses of hash functions
1. Merkle trees

2. Practical randomness extraction and the
random oracle model

3. Password storage and Proofs of Work

2. Real-life constructions

Consider again file fingerprinting

large file 𝑭

𝑯

𝒙 = 𝑯(𝑭)

A question

Suppose a file 𝑭 consists of many smaller blocks
𝑹𝟏, … , 𝑹𝒏, and the user may want to access only one of
them. How to “fingerprint 𝑭”?

Naive solution: fingerprint each of them independently.

𝑹𝟏 𝑹𝟐 𝑹𝟑 𝑹𝟒 𝑹𝟓 𝑹𝟔 𝑹𝟕 𝑹𝟖

H H H H H H H H

Better solution: construct a Merkle tree:

𝑹𝟏 𝑹𝟐 𝑹𝟑 𝑹𝟒

𝑯(𝑹𝟏, 𝑹𝟐) 𝑯(𝑹𝟑, 𝑹𝟒)

𝑹𝟓 𝑹𝟔 𝑹𝟕 𝑹𝟖

𝑯(𝑹𝟓, 𝑹𝟔) 𝑯(𝑹𝟕, 𝑹𝟖)

C

Recall: Merkle trees allow to efficiently prove that each block
𝑹𝒊 was included into the hash 𝑪.
This is done by sending 𝐌𝐞𝐫𝐤𝐥𝐞𝐏𝐫𝐨𝐨𝐟 𝑹𝒊 .

Easy to see: if H is collision resistant then so is 𝐌𝐞𝐫𝐤𝐥𝐞.

𝐌𝐞𝐫𝐤𝐥𝐞𝐏𝐫𝐨𝐨𝐟 𝑹𝟓 =
𝑹𝟔, 𝑯 𝑹𝟔, 𝑹𝟕 , …𝐌𝐞𝐫𝐤𝐥𝐞(𝑹𝟏, … , 𝑹𝟖)

File sharing

BitTorrent, Gnutella, Gnutella2, and Direct
Connect P2P... - a variant of the idea from the
previous slides:

• files in the peer-to-peer networks are identified
by their hashes

• each file consists of “pieces”

• the users download the pieces from each other.

• some of them use Merkle trees.

Plan

1. Other uses of hash functions
1. Merkle trees

2. Practical randomness extraction and the
random oracle model

3. Password storage and Proofs of Work

2. Real-life constructions

How the outputs of hash functions
look in real life?
C:\> echo -n `Wydział Matematyki, Informatyki i
Mechaniki` | openssl sha1

30428440c00bd45d2e2fd93ed980fbd8aa063428

C:\> echo -n `Wydział Matematyki, Informtyki i
Mechaniki` | openssl sha1

9937fe966d988e8163fe07f6a1dbd9caf624e1c8

C:\> echo -n `Wydział Matematyki Informatyki i
Mechaniki` | openssl sha1

456b370c5afe5f45c0af4a6290d02f6d2f557381

Observation: the outputs on different inputs are “unrelated”
and “completely random”.

we will formalize this property in a moment

Example of how this property is used: deriving
“uniformly random keys” from “non-uniform
randomness"

shorter “uniformly random” 𝑯(𝒎)

user generated randomness 𝑿 (key strokes, mouse
movements, passwords, etc.)

a hash function
𝑯: 𝟎, 𝟏 ∗ → {𝟎, 𝟏}𝑳

Example: password-based encryption

𝒄 = 𝑬(𝑯(𝝅),𝒎)

Alice Bob

𝑯 – hash function
(𝑬, 𝑫) – encryption scheme

shared password 𝝅 shared password 𝝅

message
𝒎 𝒎 = 𝑫(𝑯(𝝅), 𝒄)

Informally:
The only thing that
Eve can do is to
examine all possible
passwords .

Warning:
there exist much better
solutions for this
problem

Random oracle model
[Fiat, Shamir: How to Prove Yourself: Practical

Solutions to Identification and Signature Problems.
1986]

[Bellare, Rogaway: Random Oracles are Practical: A
Paradigm for Designing Efficient Protocols, 1993]

Idea: model the hash function as a random oracle.

𝑯: 𝟎, 𝟏 ∗ → {𝟎, 𝟏}𝑳
a completely random

function

𝒙

𝑯(𝒙)

Remember the pseudorandom
functions?

A random function
𝑭: {𝟎, 𝟏}𝒎 → {𝟎, 𝟏}𝒎

Crucial difference:
Also the adversary can
query the oracle

𝑯

formal model:

informal description:
“knows 𝑯”

a protocol

a protocol𝑯 ∶ {𝟎, 𝟏}∗ → {𝟎, 𝟏}𝑳

Every call to 𝑯
is replaced
with a query
to the oracle.

also the
adversary is
allowed to
query the
oracle.

How would we use it in the proof?

shorter “uniformly random” 𝑯(𝑿)

user generated randomness 𝑿

a hash function
𝑯: 𝟎, 𝟏 ∗ → {𝟎, 𝟏}𝑳

As long as the adversary never queried the oracle on 𝑿
the value 𝑯(𝑿) “looks completely random to him”.

Criticism of the Random Oracle Model

There exists a signature scheme that is

• secure in ROM

but

• is not secure if the random oracle is replaced with any
real hash function.

This example is very artificial. No “realistic” example of
this type is know.

[Canetti, Goldreich, Halevi: The random oracle methodology, revisited. 1998]

Terminology

Model without the random oracles:
•“plain model”
•“cryptographic model”

Random Oracle Model is also called:
the “Random Oracle Heuristic”.

Common view: a proof in ROM is better than nothing.

Plan

1. Other uses of hash functions
1. Merkle trees

2. Practical randomness extraction and the
random oracle model

3. Password storage and Proofs of Work

2. Real-life constructions

Password storage

Simple idea: instead of storing user’s
passwords 𝝅 in plaintext store their
hashes.

Better: “salted hashes” (𝒔,𝑯 𝒔, 𝝅)

advantages:
1. makes “precomputation attacks” harder (we

discussed these attacks on the last exercises)
2. if two users have the same password then the

stored values are different.

Proofs of work
Introduced by Dwork and Naor [Crypto 1992] as a
countermeasure against spam.

Basic idea: Force users to do some computational work:
solve a moderately difficult “puzzle” (checking correctness
of the solution has to be fast).

I want to send you
an email

solve a puzzle
𝒙 first

computes
𝒔 – “a solution

for 𝒙”
(this takes
𝟏𝟎 seconds)

verifies if 𝒔 is a
solution for 𝒙

(this takes a few
milliseconds)

𝒔

ok

A simple hash-based PoW

Prover

random x

finds s such that
𝑯(𝒔, 𝒙) starts with n zeros (in binary)

s

salt “hardness parameter

(in ROM) takes expected time 2n ⋅ TIME(H) takes time TIME(H)

H – a hash function whose computation takes time TIME(H)

This PoW is used in Bitcoin.

checks if
𝑯(𝒔, 𝒙) starts
with n zeros

Verifier

Problem

Computing typical hash functions is much faster when done in
parallel and in hardware (this can give advantage to a
powerful adversary).

For example “Bitcoin mining” is done almost entirely on
ASICs

Idea for a solution

Design hash functions whose computation needs to lot of
memory, so it’s hard to implement it efficiently in
hardware

Example: scrypt hash function introduced in:

Colin Percival, Stronger Key Derivation via Sequential
Memory-Hard Functions, 2009.

Used in Litecoin

Has one practical drawback: it’s access pattern is data-
dependent (hence: it reveals the input).

bad for the side-channel
resilience

How scrypt works?

𝑽𝟏 = 𝑯(𝑿) 𝑽𝟐 = 𝑯(𝑽𝟐)𝑽𝟎 = 𝑿 𝑽𝑵−𝟏 = 𝑯(𝑽𝑵−𝟐)
. . .

second phase: compute the output by accessing the table
”pseudorandomly”

for 𝒊 = 𝟎 to 𝑵 − 𝟏 do
𝒋 ∶= 𝑿𝐦𝐨𝐝 𝑵
X ≔ 𝑯(𝑿⊕𝑽𝒋)

output X

computing scrypt(X)

init phase: fill-in at table of length 𝑵 with pseudorandom expansion of 𝑿.

𝑽𝟎 𝑽𝟏 𝑽𝟐 𝑽𝟑 𝑽𝟒 𝑽𝟓 𝑽𝟔 𝑽𝟕 𝑽𝟖 𝑽𝟗

result (for N = 10):

What is known about scrypt?
[Percival, 2009]:

• it can be computed in time 𝑶(𝐍),

• to compute it one needs time 𝑻 and space 𝑺 such that
𝑺 × 𝑻 = 𝛀 𝑵𝟐

this holds even on a parallel machine.

Pictorially:

a circuit
computing

scrypt

output

input

T

S

An observation

[Alwen, Serbinenko, STOC’15]: this definition is not
strong enough.

The adversary that wants to compute scrypt in parallel
can “amortize space”. Example:

S S S

T

𝟐𝑺

can be
computed in
parallel as
follows:

Note: 𝟐𝐒 ≪ 𝟑𝑺.
So: the bound provided by Percival is meaningless.

ci
rc

u
it

 f
o

r
sc

ry
p

t

ci
rc

u
it

 f
o

r
sc

ry
p

t

ci
rc

u
it

 f
o

r
sc

ry
p

t

An observation

[Alwen, Serbinenko, STOC’15]: this definition is not
strong enough.

The adversary that wants to compute scrypt in parallel
can “amortize space”. Example:

S S S

T

𝟐𝑺

can be
computed in
parallel as
follows:

Note: 𝟐𝐒 ≪ 𝟑𝑺.
So: the bound provided by Percival is meaningless.

ci
rc

u
it

 f
o

r
sc

ry
p

t

ci
rc

u
it

 f
o

r
sc

ry
p

t

ci
rc

u
it

 f
o

r
sc

ry
p

t

The “right” definition [Alwen and Serbinenko]

a circuit
computing

scrypt

T

S

instead of looking at 𝑺 × 𝑻. . . look at the sum of
memory cells used over
time

“the area on the picture”

A recent result
Alwen, Chen, Pietrzak, Reyzin, and Tessaro: Scrypt is
Maximally Memory-Hard, Cryptology ePrint Archive, Oct
2016

Password Hashing Competition
• announced in 2013

• run by an independent panel of experts

• website: password-hashing.net

• winner (2015): Argon2 (by Biryukov, Dinu, and Khovratovic)

broken (together with several other competition finalists) by
Alwen, Gaži, Kamath, Klein, Osang, Pietrzak, Reyzin, Rolínek,
Rybár: On the Memory-Hardness of Data-Independent
Password-Hashing Functions, Aug 2016

Several improvements to Argon2 (e.g.: “Argon2i 1.3” were
also broken)

Plan

1. Other uses of hash functions
1. Merkle trees

2. Practical randomness extraction and the
random oracle model

3. Password storage and Proofs of Work

2. Real-life constructions

Fact
There exists a generic attack on any hash function

𝑯: 𝟎, 𝟏 ∗ → 𝟎, 𝟏 𝒏

that finds a collision with probability
𝟏

𝟐
and works in

time and space𝑶 𝟐
𝒏

𝟐 .

It’s called a birthday attack and we will discuss it
during the exercises.

Consequence: to achieve “𝒎 bits of security” one
needs to set 𝒏 = 𝟐 ⋅ 𝒎.

MD5 (Message-Digest Algorithm 5)

•based on the Merkle-Damgard
paradigm
•output length: 128 bits,
•designed by Rivest in 1991,
• in 1996, Dobbertin found collisions in

the compressing function of MD5,
• in 2004 a group of Chinese

mathematicians designed a method for
finding collisions in MD5,

June 2005: researchers at the Bochum University
produce 2 postscript documents with the same MD5 hash

This is done by exploiting the redundancy in postscript.

both hash to
a25f7f0b 29ee0b39
68c86073 533a4b9

Colliding certificates

2005 and 2006: A. Lenstra, X. Wang, and B. de
Weger found X.509 certificates with different public
keys and the same MD5 hash.

(we will discuss the X.509 certificates later)

Two certificates for different names (“Arjen K.
Lenstra” and “Marc Stevens”) and different public
keys.

Flame malware
attack on the Microsoft Windows Update Mechanism
exploiting MD5 collision

SHA-1 (Secure Hash Algorithm)

• based on the Merkle-Damgard paradigm
• output length: 160 bits,
• designed in 1993 by the NSA,
• in 2005 Xiaoyun Wang, Andrew Yao and

Frances Yao presented an attack that runs in
time 𝟐𝟔𝟑.

• Oct 2015: [Stevens, Karpman, and Peyrin:
Freestart collision on full SHA-1]
a collision in the compression function in 257

SHA-1 evaluations.
• Feb 2017: [Stevens, Bursztein, Karpman,

Albertini , Markov]
a collision in full SHA-1

The collision that was found in 2015

Hardware used in [Stevens, Karpman,
and Peyrin: Freestart collision on full
SHA-1]:

“We have computed the SHA-1 freestart collision
on Kraken, our 64-GPU cluster. More precisely Kraken is
composed of 16 nodes, each node being made of simple,
cheap and widely available hardware: 4 GTX-970 GPUs, 1
Haswell i5-4460 processor and 16GB of RAM.”

An estimation

[Stevens, Karpman, and Peyrin: Freestart
collision on full SHA-1]

“Concretely, we estimate the SHA-1 collision cost
today (i.e., Fall 2015) between 75K$ and 120K$
renting Amazon EC2 cloud computing over a few
months.”

Reaction of the industry

The attack from 2017

Two colliding pdf files:

An unexpected victim of this attack

A new hash algorithm: SHA-3

Selected by the National Institute of Standards
and Technology (NIST) in an open competition.

5 finalists: BLAKE, Grøstl, JH, Keccak, Skein.

Winner (2012): Keccak.

SHA-3: Keccak

authors: Guido Bertoni, Joan Daemen, Michaël
Peeters, and Gilles Van Assche

output lengths: 224, 256, 384, 512, or unbounded

speed: 12.5 cycles per byte on Core 2

Not based on the Merkle-Damgard paradigm.

Instead: it uses the sponge construction.

Standardized Keccak’s parameters
for fixed output length

state width
𝒃

rate 𝒓 capacity 𝒄
output
length

1600 1344 256 224

1600 1344 256 256

1600 1088 512 384

1600 1088 512 512

©2017 by Stefan Dziembowski. Permission to make digital or hard copies of part or
all of this material is currently granted without fee provided that copies are made
only for personal or classroom use, are not distributed for profit or commercial
advantage, and that new copies bear this notice and the full citation.

